University of Art and Design Helsinki UTAH
" Media lab

Master’s Thesis

QuiQui’s Giant Bounce

Concept and Interaction Design of a Perceptually
Interactive Computer Game for Children

Perttu Hamalainen

Instructors: Raimo Lang, Heidi Tikka

Espoo
15th November 2002

Abstract 1

Abstract

Children’s increasing use of computers can have side effects, such as obesity
and stress injuries, especially when the time to play computer games is taken
from outdoor activities and other physical exercise. The side effects are largely
caused by the way computers are used, that is, sitting still and manipulating
input devices, such as a keyboard and a mouse. However, the increasing pro-
cessing power of computers and the emergence of low-cost desktop cameras
(webcams), often integrated with a microphone, make it possible for the com-
puter to “see and hear” the user through real-time mathematical analysis of
audio and video signals. This enables novel perceptual user interfaces that
challenge the user to use his or her voice and whole body. In addition to
being physically stimulating, such user interfaces can make computer games
more immersive and compelling. They let the user interact more naturally
and directly with the game world, without manipulating any technical input
devices.

This thesis describes the design of QuiQui’s Giant Bounce (Kukakumma
Muumaassa), a children’s computer game played using body movements and
voice. The game runs on an IBM PC compatible computer equipped with a
webcam and a microphone. The user interface is perceptual and multimodal:
the user controls a little green dragon that mimics the user’s body movements
and breathes fire when the user shouts.

This thesis describes the QuiQui’s Giant Bounce concept and a working
prototype produced. The thesis focuses on interaction design, including the
user interface and technical design of the prototype. These were the author’s
main areas of responsibility with the addition of sound design. The prototype
features computer vision and hearing technology designed for child users in
real-life environments, such as homes and schools.

Keywords: interaction design, children, perceptual user interfaces, com-
puter vision

ii

Acknowledgements

Many people have contributed to this thesis in the form of thoughts, ideas and
work. First of all I would like to thank the QuiQui’s Giant Bounce team, past
and present, including Johanna Hoysniemi, Teppo Rouvi, Laura Turkki, Taina
My6hénen and also Tiina Kristoffersson, who worked with us on the Media
lab Brand Identity Workshop, Susanna Maikinen, whose flute improvisation
can be heard on the northern desert of MuuMaa, and Sofia Koski and Antti
liskola, who lent their voices for the watering can and QuiQui. The project
also owes a great deal to the French-Finnish School in Helsinki, especially
the children who participated in the usability tests and Helena Manner, who
took care of the practical issues and acted as a communication link between
us and the children and their parents. The help from Riikka Pelo and her
wonderful children Oskari and Eemeli was also invaluable. Oskari and Eemeli
participated in several informal usability tests and they also appear in the
game’s presentation video.

I would also like to thank professors Heidi Tikka and Raimo Lang for their
guidance and suggestions, as well as the Media lab teachers Samu Mielonen,
Maari Fabritius, Juha Huuskonen, Peter McGrory, Maria Koskijoki and Jukka
Ylitalo. Thanks also to Markus Lamminpéda for proofreading. Last but defi-
nitely not least, I want to thank my fiancee Johanna Meltaus for the crucial
emotional and KTEX support.

This thesis has been supported by University of Arts and Design Helsinki
UIAH, Alfred Kordelin foundation and Yleisradion 75-vuotisjuhlarahasto.

Espoo, 15th November 2002

Perttu Hamaéalainen

Contents

Contents

1 Introduction

1.1 Scope of the thesis: the QuiQui’s Giant Bounce concept and a
working prototype

1.2 Overview of the project and the roles of the participants
1.3 Current status of the project

1.4 Document structure

2 The QuiQui’s Giant Bounce concept and prototype
2.1 A perceptually interactive game for children
2.2 The prototype: a flying game
2.3 Design goals: usability and immersion
2.4 Target group and environment of use
2.5 Game design and narrative
2.5.1 Storylineo
2.5.2 Characters: QuiQui and Kalander
253 Helpsystem oL
2.5.4 Free navigation L.
2.6 Interaction and visual style.
2.7 Sound design
2.7.1 Goals: cinematicness, naturalness
2.7.2 Challenges of interactive sound
2.7.3 Interactive musical elements
2.7.4 Feedback: how do you know that you are walking?

2.7.5 Advanced interactive audio

Contents iv
2.8 Ideology: non-commercial research vs. designing a product . . . 19
3 The interaction design of the flying game 21
3.1 Starting points and motivation. L. 21
3.1.1 Ujo Sankari: a physically interactive platform

jumping experiment 21
3.1.2 From jumping to flying 22
3.1.3 Computer vision and hearing as the technical approach . 23
3.1.4 Computer vision and its problems in Ujo Sankari 24
3.1.5 Related work, 25
3.2 Requirements and assumptions 29
3.3 Design and testing of the user interface 32
3.3.1 Methodology: usability testing with functional prototypes 33
3.3.2 Results of the testing 35
3.4 Technical design and implementation 38
3.4.1 Computer hearing 38
3.4.2 Game physicso o 40
3.4.3 Computer vision 43
3.4.4 Evaluation of the technical design 48

3.4.5 Dead ends: adaptive background models and active con-
tours oL 50
4 Conclusions 53
A Software architecture of the prototype 59
B Computer vision source code 62
C The synopsis behind the prototype 67

1 Introduction 1

1 Introduction

Children’s increasing use of computers can have side effects, such as obesity
and stress injuries, especially when the time to play computer games is taken
from outdoor activities and other physical exercise. The side effects are largely
caused by the way computers are used, that is, sitting still and manipulating
input devices, such as a keyboard and a mouse. However, the increasing pro-
cessing power of personal computers and the emergence of low-cost desktop
cameras (webcams), often integrated with a microphone, make it possible for
the computer to “see and hear” the user through real-time mathematical anal-
ysis of audio and video signals. This enables novel perceptual or perceptive user
interfaces that challenge the user to use his or her voice and whole body. In ad-
dition to being physically stimulating, such user interfaces can make computer
games more immersive and compelling. They let the user interact more nat-
urally and directly with the game world, without manipulating any technical
devices.

This thesis describes the design of QuiQui’s Giant Bounce (Kukakumma
Muumaassa), a children’s computer game played using body movements and
voice. The game runs on an IBM PC compatible computer equipped with a
webcam and a microphone. The user interface is perceptual and multimodal:
the user controls a little green dragon that mimics the user’s body movements
and breathes fire when the user shouts.

1.1 Scope of the thesis: the QuiQui’s Giant Bounce
concept and a working prototype

The scope of this thesis is limited to the QuiQui’s Giant Bounce concept and
the CD-ROM that was submitted to the Milia New Talent 2002 competition
in November 2001. The CD-ROM is attached to the cover of this thesis. It
includes a working prototype of the game, an offline version of the project’s
website and presentation videos. Note that in the Milia version of the proto-
type, all text has been translated from Finnish into English. Since January
2002, the project has continued as a post-graduate research project.

1 Introduction 2

This thesis focuses on interaction design, including the user interface and
technical design of the prototype. These were the author’s main areas of
responsibility with the addition of sound design. However, the sound design
was not a lot of work compared to the interaction design, so it is only briefly
touched in this thesis.

1.2 Overview of the project and the roles of the
participants

The thesis project started after Christmas 2000 as a collaborative project be-
tween the author and Johanna Hoysniemi, with scriptwriting support provided
by Laura Turkki. The first two months of the year 2001 were spent design-
ing the story, characters, interaction and game structure. These were refined
during the spring through prototyping and testing. During the spring, the
team also got two new members: Teppo Rouvi (graphical design) and Taina
Myo6hénen (producer).

The first public release of the QuiQui’s Giant Bounce prototype took place
in June 2001. The interaction and game design was practically complete at
that time, but the technical design had some problems. The technology was
redesigned and tested and the prototype was considered to be complete in
fall 2001, when it was submitted to the mindTrek 2001 and Milia New Tal-
ent 2002 competitions. Apparently the prototype had no major flaws, since
it won the Pikku Kakkonen category (best multimedia for children) in the
mindTrek competition. It was also one of the 14 winners of the Milia New
Talent competition.

The author was responsible for the sound design, technical design and pro-
gramming. The concept and interaction design was done collaboratively by
the author and Johanna HoOysniemi. The author also experimented with dif-
ferent technologies and user interface prototypes. The prototypes were refined
based on the results of testing and interviews done with children, conducted
by Johanna Hoysniemi. Hoysniemi was also responsible for the visual design
principles and the design of the project’s website. Teppo Rouvi produced
all the graphics for the prototype. The game and character design was done
collaboratively by the whole group. Laura Turkki wrote the script that the
prototype is based on.

1 Introduction 3

1.3 Current status of the project

The authors are currently working on a series of game prototypes similar
to the flying game described in this thesis, but exploring other themes of
movement and also some new areas of research. The goals of the project are
still fundamentally the same, with the addition of the author’s and Johanna
Hoysniemi’s doctoral degrees. The results of the project, including scientific
papers and downloadable software, are published on the project’s homepage
http:/ /kukakumma.net.

1.4 Document structure

This thesis is divided into two main chapters. Chapter 2 describes the QuiQui’s
Giant Bounce concept. Chapter 3 describes the interaction and technical de-
sign in more detail. Note that although the text was written by the author, the
ideas in Sections 2.1-2.6 and 2.8 were developed collaboratively by the author
and Johanna HoOysniemi or the whole team. Also considering the other sec-
tions, it must be acknowledged that in team work, people contribute to each
other’s thinking constantly. Without the discussions with the other members
of the team, the author’s view of the project and all the related concepts would
no doubt be less insightful.

2 The QuiQui’s Giant Bounce concept and prototype 4

2 The QuiQui’s Giant Bounce
concept and prototype

Figure 2.1: 5-year-old Oskari playing the game

2.1 A perceptually interactive game for children

QuiQui’s Giant Bounce is a computer game for 4 to 9-year-old children that is
controlled through movement and voice. The game does away with keyboards
and traditional game controllers and uses a web camera (webcam) and a mi-
crophone to “see and hear” the player. The typical setup of the game is that
the webcam is positioned on top of the monitor, as shown in Figure 2.1. The
user moves in front of the monitor, facing it. The game has a series of game
tasks connected by a storyline. Each task has its own theme of movement,
such as flying, jumping or swimming.

The main goal of the game is to offer a physically challenging alternative

2 The QuiQui’s Giant Bounce concept and prototype 5

to traditional computer games. QuiQui’s Giant Bounce activates children to
use their bodies and supports the development of their physical abilities, such
as coordination skills, spatial recognition and balance.

QuiQui’s Giant Bounce is an example of perceptual and multimodal inter-
action design. The field is quite young and it is only recently that scientific
conferences devoted to perceptual interaction have been organized, such as the
Workshop on Perceptual User Interfaces (see hitp://www.cs.ucsb.edu/
conferences/PUI/index.html). Perceptual interaction means that the com-
puter perceives the user in the same way as a human would, using electronic or
otherwise technically implemented senses, such as vision or hearing. The field
is closely related to ubiquitous computing, in the sense that the technology
is unobtrusive. The user does not need to operate any equipment, such as a
mouse and a keyboard.

Perceptual user interfaces are interesting when designing computer games,
since they enable the user to naturally act out the role of the main character.
The natural user interface can deepen the user’s emotional commitment to the
game and make the game more compelling and exciting. Properly designed
perceptual user interfaces can also add physical exercise to the game. This is
a benefit compared to traditional computer games, the overuse of which may
have negative effects on children’s physical health (see e.g. Subrahmanyam
43]).

Technically speaking, this thesis deals with computer vision and computer
hearing. In practice this means that audio and video signals are analyzed
mathematically to extract information about the user’s actions. Note that
the term computer hearing is used to emphasize that it refers to a simulated
sense, although terms like machine listening and computer audition are more
common in the scientific literature.

2.2 The prototype: a flying game

The QuiQui’s Giant bounce prototype produced in this thesis consists of the
game’s main menu and one game task, a flying game. The prototype works on
an IBM PC compatible computer equipped with the following hardware and
software:

Microsoft Windows 98,/2000/ME/XP operating system

Microsoft DirectX 8 or higher

Macromedia Flash 5 player

Windows compatible soundcard

2 The QuiQui’s Giant Bounce concept and prototype 6

Figure 2.2: The main menu of the prototype

e Windows compatible webcam

e Microphone (optional)

The prototype is provided on the attached CD-ROM as an automatic in-
staller package. It can also be downloaded from the project’s website www.
kukakumma.net. The website also contains instructions and other material,
such as the background story, pictures and videos.

The game starts with the theme song and the menu shown in Figure 2.2.
In the menu, the user can start the flying game by clicking on the yellow
watering can. Other options are exiting to the ending credits by clicking the
x-button, viewing the help panel by clicking the question mark button and
adjusting Windows camera settings by clicking the camera button. Note that
throughout the game, the bottom left corner of the game shows a webcam
view so that the webcam can be placed correctly. The upper body and hands
of the user should be visible at all times to make the game function correctly.

In the flying game, the player controls the game’s main character QuiQui, a
little green dragon. The game starts with instructions spoken by the watering
can. The starting view is shown in Figure 2.3.

In the game, QuiQui has to help the yellow watering can to water the
desert. This is accomplished using a pair of leaves to fly through the clouds
to make them rain. A screenshot of the game in action is shown in Figure 2.4.
The game ends when all the eight clouds have rained. In the end, QuiQui flies
down with a loop and the watering can congratulates him, showing the time
spent. After that, the game returns to the main menu.

2 The QuiQui’s Giant Bounce concept and prototype 7

‘ﬁ; ' (2 To<
"' = el

¢

Figure 2.3: Starting the flying game

The user controls QuiQui by shouting, waving his or her hands and bending
his or her body sideways, as shown in Figures 2.4 and 2.5. QuiQui moves his
hands correspondingly and rotates in the direction the body is bent. Shouting
makes QuiQui breath fire and sparkles.

The game has the following interactive objects, shown in Figures 2.3 and
2.4:

e The clouds. In the beginning, the clouds are filled with water. When
QuiQui flies through a cloud, it rains. The surface of the water goes
down and raindrops fall from the cloud. When raining, the cloud also
makes a musical note. When empty, the cloud is completely white.

e The flying fish. The flying fish fly horizontally through the view every
now and then, jumping and splashing in the clouds that are still full of
water. If QuiQui hits a fish, he falls down a bit. QuiQui can scare the
fish away by breathing fire. If a fish gets hit by a flame, it flees in the
direction it was coming from.

e The sun. The sun points towards the nearest cloud full of water.

e The raindrop symbols in the top right corner. Each cloud that has rained
causes a raindrop symbol to turn blue in the top right corner.

e The help and exit buttons in the top right corner. The help button
displays a help panel and the exit button returns to the main menu.

2 The QuiQui’s Giant Bounce concept and prototype 8

Figure 2.5: The interaction model: the avatar mimics the user’s actions

e The apples. There are three apples that bounce on the clouds or on the
ground. The apples are colored blue, green and pink. If QuiQui hits an
apple, he eats it and his color is changed correspondingly.

e The windmill. The windmill adds challenge to the game. When QuiQui
gets near enough, the windmill’s wings rotate and try to blow QuiQui
away.

2.3 Design goals: usability and immersion

There are quite many scientific projects dealing with perceptual interaction,
such as the Kidsroom and Virtual Aerobics Teacher installations developed at
the MIT Media Lab [38]. There have also been some efforts in using perceptual
or physical interaction technology in commercial products, such as the camera

2 The QuiQui’s Giant Bounce concept and prototype 9

based installations for amusement parks by Vivid Group [1], the IntelPlay
camera based games by Intel and Mattel [18], and the sensor carpet based
dancing game Jungle Book Groove Party by UbiSoft [2|. Our goal was to make
QuiQui’s Giant Bounce to stand out from other products and experiments in
the following ways:

e A user interface making use of the whole body and also voice. The exist-
ing perceptually interactive games only use one input modality, usually
movement detected with computer vision technology. Other games used
with body movements are based on physical sensors, such as a sensor
carpet, that do not provide data on the whole body of the user. The
technology behind QuiQui’s Giant Bounce combines both computer vi-
sion and computer hearing. It does not interfere with gameplay, as the
user interface does not require any devices the player should wear or use.

e High usability, regarding both the game and its installation. QuiQui’s
Giant Bounce is designed for and with children, based on interviews
and iterative usability testing. Designing for children from the point of
view of usability also causes strict requirements on the technology, as
elaborated later in this thesis. Previous perceptually interactive works
all require a controlled environment or some assistance from the user
when configuring the system. However, this is not desirable in software
designed for children. The software design should hide all the techni-
cal complexity so that the game ‘works out of the box’, installing and
configuring automatically.

e No need for any specific hardware. QuiQui’s Giant Bounce is designed to
work with all Windows compatible webcams and microphones instead of
a sensor carpet or specific camera models, such as the IntelPlay Me2Cam
used by Intel and Mattel. This makes the game accessible for a wider
audience, since it can be downloaded from the project’s homepage in
digital form.

2.4 Target group and environment of use

From the very beginning, we decided to design the game for as young children
as possible, since the human motoric development is fastest at a young age.
For information about children’s motoric development, see for example the
book by Ismo Karvinen [31].

To reach as wide an audience as possible, the game is targeted for the
natural environments where children use computers, that is, homes, schools
and daycare centers. An alternative would have been to design the game as
an installation for museums or amusement parks.

2 The QuiQui’s Giant Bounce concept and prototype 10

However, the interaction technology sets a lower limit for the age group.
When testing different versions of the prototype with children, we found out
the age of five or four to be a practical lower limit for the target group. Younger
children may have problems, for example, with realizing that they should stay
within a certain area since the camera’s field of view is limited. Finally, we
decided that our target group would be children of 4 to 9-years-old, with focus
on the range 4 to 6.

2.5 Game design and narrative

When designing the game and the narrative, we tried to place QuiQui in
relation to existing characters and brands, as shown in Figure 2.6. The figure
has three axes: dynamics, violence and importance of narrative.

We wanted the game to be dynamic, but not as action-packed as the Poke-
mon television series. The game should be exciting but it should not have an
excess of violence. However, it should have some edge instead of the nauseating
good-heartedness of Winnie the Pooh.

The authors believe that a perceptual user interface is an excellent way of
adding excitement without violence. Although the game uses cartoon graphics,
it does not contain the infamous ‘funny’ acts of violence typical to cartoons.
Also, no-one is killed in the game. The antagonists cannot kill QuiQui, only
get in his way. They can, for example, make QuiQui fall down when he is
trying to fly up. QuiQui cannot kill other characters, he can only scare them
away or trap them for a while.

To have a compelling story was also important. Initially, we wanted to
create an adventure that combines physical action with the narrative experi-
ence you get from a good book. On the narrative axis of Figure 2.6, QuiQui is
closer to Disney’s Beauty and the Beast than the Teletubbies. However, what
we first had in mind was probably too complex. We observed in our tests
that it is important to motivate children with a narrative, such as helping a
sympathetic character. On the other hand, longer arcs of drama and a more
elaborated story do not seem as important, which is supported by the way
children themselves tell stories. A good reference to children’s storytelling is
the Children Are Telling project that has published children’s stories on the
Internet [3].

As for the structure and interactive narrative, we did not want to use a too
complex or branching storyline because of the target group. Also, we had not
seen any truly convincing and compelling works with a branching storyline.

The basic structure of the game is that it has a series of game tasks con-
nected with a linear storyline. The games start with an introductory story

2 The QuiQui’s Giant Bounce concept and prototype 11

Non-violent

Dynamic

Violence

Figure 2.6: QuiQui’s Giant Bounce in relation to other characters and brands

animation that explains the task, for example by introducing a character that
needs help. However, the introductory animation was left out of the prototype
because of lack of resources. Instead, the story can be read on the project’s
homepage.

The use of the animations is similar to the use of video clips between game
episodes in adventure computer games, such as the Tomb Raider series [4]. The
animated story conveys the drama and motivation, the game tasks themselves
are small skill-and-action games. In the game tasks, the challenge is to learn
to move correctly, for example to jump and run up a hill, dodging rocks that
are plummeting down. The use of a straightforward storyline and focusing on
the action is in agreement with the “less choice, more responsiveness” approach
for physically interactive story environments proposed by Pinhanez et al. [38].

Each game task has its own theme of movement, for example jumping,
flying or swimming. The first task contains only simple movements, but the
following tasks require more skill and may also combine different movements.

2.5.1 Storyline

The storyline in a nutshell is that the planet Muumaa has stopped rotating
so that one half of the planet lives in an everlasting day and the other half
in an everlasting night. QuiQui arrives at the planet, hatching from an egg
floating in the sea. He is carried to the shore by the friendly pink lizard
Kalander, who also acts as a helping character throughout the game. QuiQui
begins adventuring around the planet, meeting and helping various characters.

2 The QuiQui’s Giant Bounce concept and prototype 12

Gradually, he gets hints of what is going on. In the prototype, QuiQui has to
help the watering can that is watering the desert, dried in the constant blaze of
the sun. Finally, QuiQui gets into the planet’s core and restarts the rotation.

The project was problematic from the point of view of scriptwriting. Script-
writing is closely connected to interaction design and motivates the themes
of movement used. However, the interaction design of a game task can be
fully decided on only after the technology has been developed, prototyped and
tested. We soon decided that only the rough outline of the story would stay
constant, but the details would be crafted along with the prototypes of the
games.

The author had little part in the scriptwriting, so the details of the story
are not discussed in this thesis. However, the synopsis used when designing
the flying game is included in appendix C, written by Laura Turkki.

2.5.2 Characters: QuiQui and Kalander

Each game task introduces new characters, but two characters appear through-
out the game. One is naturally QuiQui and the other is Kalander, a helpful
character that QuiQui meets in the beginning of the game.

QuiQui is a little, perky and adventurous green dragon. QuiQui’s speciality
is his rainbow-colored fiery breath that changes into bubbles under water and
small clouds of ice crystals in the winter. Although he is referred to as a
‘he’, he was designed to be a genderless character that both boys and girls
could identify with. We did not want to support choosing among multiple
main characters, mainly because of limited production resources. To be more
specific, QuiQui is not an ordinary dragon, since dragons usually have wings.
QuiQui’s wings are missing simply because being able to fly throughout the
game would make it difficult to provide motivation for the other themes of
movement.

Kalander is the helping character that pops up whenever QuiQui needs
help. In the beginning of the story, QuiQui is floating in the sea inside an egg.
He hatches from the egg when waves throw it on Kalander’s head. Kalander
then carries QuiQui to the shore to begin the adventure.

2.5.3 Help system

Kalander is somewhat related to the Cheshire Cat in Alice in Wonderland
in that he can appear and disappear anytime and anywhere. When QuiQui
needs help, Kalander’s head peeks from a hole in the ground or simply from
behind the edge of the screen. All instructions are spoken by Kalander or other

2 The QuiQui’s Giant Bounce concept and prototype 13

Figure 2.7: QuiQui

Figure 2.8: Kalander

characters QuiQui meets, whichever is more convenient considering the game
context.

Game instructions are also provided using videos of playing through the
game tasks. This is analogous to arcade game machines that ‘play alone’ when
nobody is using the machine. However, in QuiQui the videos also teach how to
control the game, since the camera’s view of the ‘model” user is shown in the
bottom left corner of the screen. According to our experience, the operation of
perceptual user interfaces is always easier to show by example than to explain
in words.

The prototype’s help functionality is reduced to a panel of text and figures
with no spoken help or videos. The spoken help would have required iterative
user testing and rewriting in addition to recording the speech with voice actors.
The video was left out because using full screen video would have increased
the download size of the prototype. The videos would be most effectively

2 The QuiQui’s Giant Bounce concept and prototype 14

implemented by recording only the low-resolution video of the user. The game
system could then replay a game using the recorded video as the control data
instead of the real-time camera input. This would require some additional
programming in the prototype.

2.5.4 Free navigation

The user may freely select a game task from the game’s main menu. Our
hypothesis is that the user remembers a game task by its theme of movement,
thinking for example “It was fun to fly! I’ll try that again” However, this
hypothesis has yet to be validated because the prototype only features one
game task.

The approach has the drawback that the game offers less challenge and
reward than if the game tasks were only available after the user has completed
the preceding task. However, in an environment such as a daycare center,
the game has multiple users and the latter approach would need some way of
identifying the users. This is problematic, since it would make it more complex
to start the game. Because the target group is at least partly illiterate, the
game cannot identify the users by requesting them to type in their names.
One solution for identifying the users could be to use pictures taken with the
webcam. This is not implemented in the prototype, but will probably be
experimented with in the future. The user profiles could also enable other
forms of personalization and reward. For example, the graphics of the main
menu could be varied depending on how many times the user has played each
game task.

2.6 Interaction and visual style

From the point of view of interaction design, our goal was to enhance immersion
and the player’s bond with the avatar. We wanted a transparent and intuitive
user interface that would let the player to get under the avatar’s skin with
a minimum amount of practicing. Perceptual interaction technology seemed
ideal for this, since it allows a direct mapping between the user’s actions and
the avatar’s actions.

The basic interaction model is that the user is represented by a graphical
avatar that mimics the user’s actions. In the prototype this means that QuiQui
flies when the user waves his or her hands. QuiQui also breathes fire and
sparkles when the user shouts. This is illustrated in Figure 2.5.

The visual style is cartoonish two-dimensional animation, shown from the
point of view of a third person. Although three-dimensional graphics would

2 The QuiQui’s Giant Bounce concept and prototype 15

probably make the game more immersive, using two-dimensional graphics was
more practical considering the resources available. None of the authors had
extensive experience in creating three-dimensional graphics, but both Johanna
Hoysniemi and Teppo Rouvi were able to create two-dimensional graphics
rapidly using the Macromedia Flash application. We also wanted to keep
the team as small as possible, since the main focus of the project was in ex-
perimenting with the interaction.

The author had little part in designing the visuals, so they will not be
discussed further in this thesis.

2.7 Sound design

2.7.1 Goals: cinematicness, naturalness

One of the first goals set for QuiQui’s sound design was a certain cinematic
characteristic, a semblance of film sound. Lacking a better word, the word
cinematicness is used here.

Cinematicness seems like a prevalent goal in current computer games. The
audiovisual design of computer games approaches movies in many aspects.
The production budgets are soaring, the story is told using high-quality movie
sequences, the quality of the three-dimensional graphics and special effects is
catching up with movies, and the sound design uses several layers of effects,
music and ambient sounds. Technology no more places any practical limits for
game sound.

Cinematicness was set as a goal mainly because the story was to be told
using animation sequences and the animations and game tasks were to be
connected together as seamlessly as possible. However, cinematicness is not
some strictly defined concept, but more of a mental guideline. The prototype’s
sound design tries to avoid traditional computer game sound elements, such
as constant background music and synthetic marker sounds. The author also
tried to evaluate the sound elements outside of the game context, pondering
whether the elements could also be used non-interactive animation.

Another important sound design goal was a kind of naturalness and warmth,
to avoid cold and synthetic sounds. This is mainly realized by the music that
uses mainly real instruments or realistic synthetic sounds. In the prototype,
the main instruments used are acoustic guitar, flute and soft flute-like synthetic
sounds.

2 The QuiQui’s Giant Bounce concept and prototype 16

2.7.2 Challenges of interactive sound

Interactivity poses new challenges and restrictions for game sound design com-
pared to film sound design. In games, the sound designer can only mix and
finish parts of the soundscape, but the soundscape as a whole depends on the
actions of the user. The sound design cannot be tested simply by listening,
but someone has to actually play the game.

Music is probably the part of game sound most affected by interactivity.
Music creates mood and ambience and it is often used to anticipate actions
and mood changes before they are seen in the visuals. This is rarely possible
in interactive applications, since the actions of the user cannot be predicted
infallibly. The user may stay at one space or mood for a very long time so
that a pre-composed theme may run out. On the other hand, the user may
suddenly perform an action that calls for a rapid change of mood, that is,
a transition from one musical theme to another. This requires the composer
to use special methods, such as using several simultaneous layers of music or
specifying all the possible transitions [5].

Interactive music is a research field of its own. Solutions have been pro-
posed, for example, for automatical variation of themes and algorithmic com-
posing of game music. One of the most widely used technical systems is Mi-
crosoft DirectMusic [14].

2.7.3 Interactive musical elements

In QuiQui’s Giant Bounce, music is used primarily in the story animations and
to convey a mood change, for example when the user moves from one place
to another or if the user’s actions start a dramatic series of events. In the
prototype, the music is implemented simply by playing sound files, since an
appropriate interactive composition tool was not found. Microsoft DirectMusic
is not used, since QuiQui’s Giant Bounce should be portable to other operating
systems than Microsoft Windows. The prototype has three songs: the main
theme, the ambient theme of the flying game and the ending credits.

The game tasks use musical ambient sounds instead of music with a clear
melody and structure. The game tasks may last a long time and the user might
get bored or irritated by a repeating melody. The flying game has an ambient
musical theme composed of a flute improvisation accompanied by arrhythmic
percussion sounds made with pieces of bricks and rocks. The soundscape
is interactive in that the levels of musical ambience and the sound of wind
are controlled according to QuiQui’s position. The music dominates close to
ground level, but higher in the air the sound of the wind grows louder and the
music fades out.

2 The QuiQui’s Giant Bounce concept and prototype 17

An additional goal of the sound design is to develop the user’s musicality
when possible. The game tasks give feedback of the user’s actions by musical
means and use musically interactive objects. The prototype has clouds that
each play a different note when QuiQui flies through them, so that the user can
play melodies by flying. The notes fade away slowly so that it is also possible
to produce chords and harmonies by flying fast enough. Another example
could be to jump up a staircase where each step corresponds to a note on
some musical scale.

2.7.4 Feedback: how do you know that you are walking?

In QuiQui’s Giant Bounce, the user should be able to forget that he or she is
standing with feet on the ground in front of the computer. The user should be
able to imagine that he or she is for example flying in the virtual world of the
game. The soundscape of the game has a strong effect on this in the form of
aural feedback.

When you walk, the feeling of walking is mainly created through four senses.
You see that you are moving in relation to the world. The sound of your
footsteps tells you what kind of material you are walking on. Your muscle
sense and sense of touch tell you that your feet are moving and touching the
ground. However, the sense of touch is imprecise because of shoes and clothing.

The user interface of QuiQui’s Giant Bounce tricks the muscle sense while
the audiovisual content tries to create an illusion of movement. The role of
sound is important, since the game can surround the user only using sound.
The role of sound is even more pronounced in QuiQui’s Giant Bounce than in
traditional games, since the user is further away from the screen.

Sound has two roles in creating the sense of movement:

e Aural feedback supports the muscle sense, making the user feel the
medium he or she is virtually moving in. In other words, the sound-
scape has to react to the user’s movements. This was not fully realized
until the sounds of QuiQui’s ‘wings’ were added to the flying game of
the prototype. The waving of the user’s hands (the waving of QuiQui’s
hands and the big leaves) triggers swooshing sounds similar to a big bird
flapping its wings. The sounds seem to make the game considerably
more immersive. Sometimes the sounds even seem to make you feel the
stronger air resistance of the game world. Another example could be the
sound of water that should react realistically when the user swims.

e Sound conveys information about the movement of the avatar or the
camera in relation to other objects. The sounds of the objects should
move realistically in a three-dimensional space. Unfortunately this is

2 The QuiQui’s Giant Bounce concept and prototype 18

quite difficult in QuiQui’s Giant Bounce and it has not been implemented
in the prototype. Satisfactory results were obtained simply by changing
the volume of sound objects according to their distance from QuiQui.

Three dimensional sound can be produced using headphones, several loud-
speakers or a pair of loudspeakers if the locations of the loudspeakers and
the user’s ears are known [30]. Using headphones is against the unobtrusive
technology approach and only few people have connected their computers to
a multichannel audio system, such as a home theater system. A pair of loud-
speakers could be used, provided that the location of the user’s ears could
be precisely tracked using the webcam. Such systems have been studied by
Gardner [24], using the LAFTER computer vision lips and face tracker [36].
However, this would require information about the camera’s optics and the
location of the loudspeakers. Precise tracking is also difficult with low quality
webcams. The upper body and hands of the user must fit in the picture so
that the user’s face may be represented only by a small number of noisy pixels.

2.7.5 Advanced interactive audio

In addition to simulating the medium of movement, the data from the user’s
movements opens up other possibilities for sound design. The user could con-
trol the music and sound effects to create a new living and reacting dimension
into the game. For example, the rhythm of the music could be linked to
the rhythm of the user’s movements. The synthesis of music and sound effects
could also be controlled directly by motion in the same way as in the legendary
Theremin [6]. The Theremin is an electric musical instrument controlled by
the position of the player relative to two antennas. Its eerie sound was quite
popular in old science-fiction films.

Microphone input is also an option that has not been utilized in game
sound design, at least to the author’s knowledge. It could be used to create
spatial effects such as echo. Game characters could also use it, for example to
repeat the player’s words backwards or store pieces of sound and play them
back to other users.

Unfortunately, not all of the presented ideas could be implemented in the
prototype. New methods and applications of interactive game audio are cur-
rently one of the author’s main areas of research.

2 The QuiQui’s Giant Bounce concept and prototype 19

2.8 Ideology: non-commercial research vs. de-
signing a product

The author would like to conclude the concept description with some thoughts
on financial issues. During the project, it was often discussed whether the
game was going to be commercialized in some way. We felt that the project
could really make the world better, at least in some tiny aspect, so we wanted
the game to be freely available. We considered several ways of combining free
distribution of the game with some earning logic, such as

e Bundling the game with appropriate hardware, such a computer or a web-
cam. At first, this might seem like a brilliant idea. However, bundling
deals are sought after by several software companies and the profits made
are small. Software may even be bundled free of charge to promote other
products by the same company or more advanced versions of the same
software. There is also a danger that a camera manufacturer might steal
the concept, because they usually have their own development teams
specialized in creating applications for their cameras. Many cameras
come for example with some motion detection software, meaning that
camera vendors do have at least some expertise in computer vision.

e Shareware. The usual notion of shareware is that you get to try the
software for free and if you like it, you voluntarily pay a small amount
to support the authors. Ideologically, it is a nice effort, but in practice
the payment system rarely works, at least to the author’s knowledge.
However, it might be that shareware does not work simply because mak-
ing the transaction requires too much effort. Not all people are willing
to give their credit card numbers to small software vendors and inter-
national bank transfers are cumbersome. Shareware could be perhaps
revived using mobile transactions, for example using text messages.

e Combining the game with a television show. The story animations could
for example be shown weekly in a children’s program, after which the
game could be downloaded to a computer or a set top box from the
broadcaster’s website. Also, the webcam could act as a new feedback
channel in interactive television shows. For example, a selected number
viewers could compete against each other, live from their homes.

e Using the game as a proof-of-concept product for a technological plat-
form. The computer vision and hearing components used in QuiQui’s
Giant Bounce could be licensed to other companies as a perceptual in-
teraction platform. The companies could then develop their own prod-
ucts using the same technology. The QuiQui’s Giant Bounce game itself
would act as a demo project. However, considering the installed base

2 The QuiQui’s Giant Bounce concept and prototype 20

of webcams, large scale commercial product development is currently
probably not very lucrative. Also, focusing on technology would not be
artistically very interesting.

e Free national distribution but commercial international versions. As a
children’s product, QuiQui’s Giant Bounce relies heavily on localized
speech. The Finnish version of the game would probably be not very
interesting for English children. The Finnish version could be distributed
freely, but international versions would be sold through an international
publishing company, such as UbiSoft. In a way, Finland would act as a
huge testing laboratory so that the commercial versions would have less
bugs and unfortunate surprises.

e Sponsorships. Since QuiQui has had good publicity and it has the po-
tential to benefit children’s physical health, it could probably attract
sponsorships from companies. Product placement could also be exploited
more in computer games. The author only knows only of one campaign
where a game was given to all customers of a supermarket. The game was
a rally game, where the player had to collect packages of products sold
at the supermarket, driving around city streets lined with commercials.
The game was probably a modified version of some old game. Once a
game has been programmed, it requires relatively little effort to change
the graphics and sounds.

We ended up doing the project with a minimal budget, supported by our
part-time jobs and public funding. It seemed to be the most productive and
free way. Also, none of us was ready to found and manage a company. As
anticipated, the novelty and free availability of the game brought it a lot of
positive publicity in the media. However, the publicity was only national and
it seems very difficult to make the project known internationally without a
proper marketing budget. The future of the project is open and much depends
on the research currently pursued.

3 The interaction design of the flying game 21

3 The interaction design of the
flying game

3.1 Starting points and motivation

The motivation for this thesis was the author’s artistic ambition combined
with the concern for the increasing amount of time young children spend with
computers and game consoles, instead of playing outside using their bodies
and practicing their basic motoric skills. The author’s background is in game
design as well as electronics, programming and multimedia signal processing.
During his MA studies at the UTAH Media lab, a goal slowly formed in the
author’s mind: to combine sweat and physical action with computer games.

As an example, the author wondered how to bring the action and aesthetics
of movement of martial arts computer games back to the real world. The
aesthetics seem to have first been exaggerated and transformed from real-
world martial arts to Hong Kong action movies and adapted from them to
computer games such as Tekken. The author wanted to develop systems that
would make it possible for the user to experience the freedom of movement
possible in the virtual worlds of computer games, governed by freely designed
game physics instead of the unyielding physics of the real world.

3.1.1 Ujo Sankari: a physically interactive platform
jumping experiment

The concrete starting point of QuiQui’s Giant Bounce was Ujo Sankari (Shy
Hero). It is the author’s first perceptually interactive game experiment made
for the Chrismas 2000 Demo Day of UIAH Media lab. Figure 3.1 shows a
screenshot of the game. Ujo Sankari is a prototype of a physically interactive
platform jumping game. The game character jumps on various graphical ob-
jects and it is controlled by jumping in front of a webcam. The name of the
game stems from the brown paper bag covering the hero’s head, used because
the author could not draw a face for him. Fortunately, the game encouraged
Johanna Hd&ysniemi to propose that we would work together, which lead to the

3 The interaction design of the flying game 22

founding of a more widely talented team.

Johanna Hdoysniemi realized that Ujo Sankari was an example of a multi-
media product that would not smother children’s spontaneous physical energy.
Instead, such products could provide physical exercise and challenge for chil-
dren and support the development of their basic motoric skills. Hoysniemi
was searching for a topic for her final thesis, her ambition being exploring new
forms of interactive narrative for children. Hoysniemi also had the crucial ex-
perience of working with children, as she had been a swimming instructor for
several years.

Figure 3.1: A screenshot of Ujo Sankari

3.1.2 From jumping to flying

The author had been programming and demonstrating Ujo Sankari at the
home of Laura Turkki, who in a gust of inspiration wrote a series of game
scripts during her Christmas holiday, including the basic idea of the flying
game. The original idea was to jump on the clouds to shake the water down.
Platform jumping changed into flying in the prototype when it was decided
that QuiQui’s Giant Bounce would contain several game tasks with different
themes of movement. We had to choose one theme for the prototype and flying
felt like the one that would catch the attention of users and media.

The multimodal user interface concept of flying and breathing fire was a
synthesis of several ideas. The author had been playing the medieval fantasy
adventure game Drakan, where the user controls a flying and fire-breathing
dragon with a mouse and keyboard user interface. The game was fascinating
and together with earlier experiments with voice-based user interfaces, it gave

3 The interaction design of the flying game 23

the author the idea of breathing fire by shouting. The idea could be used when
the QuiQui character was born after several attempts with penguins and other
creatures.

3.1.3 Computer vision and hearing as the technical ap-
proach

QuiQui’s Giant Bounce is based on computer vision and hearing. The game
perceives the user by mathematically analyzing the video and audio signals
produced by a webcam and a microphone. Using computer vision and hearing
was a practical choice, since much of the technical framework had already
been implemented for Ujo Sankari. However, there are also other alternatives,
such as ultrasonic tranceiver systems or gyroscopic sensors. For an overview
of different technologies for tracking human motion, see e.g. Mulder |7].

Computer vision and hearing were chosen as the interaction technology
because we wanted to provide a natural and unencumbered user interface that
would also be robust and accessible in every home. We did not want to use any
sensors attached to the user’s body, which is awkward if several children want
to play the game together or by taking turns. Computer vision and hearing are
also ideal technologies for the interaction designer. In principle, they enable
the game to sense all that the designer senses.

The equipment needed is an IBM PC compatible computer and a web-
cam. The microphone is optional, enabling the fire-breathing functionality.
Although the game would probably be more immersive as an installation with
a large, projected screen and three-dimensional multichannel audio, we wanted
the game to be accessible to as large an audience as possible.

Because of the variety of webcams on the market, we did not want to
optimize the game for a particular hardware setup. Supporting as many camera
models as possible poses a challenge because the cameras differ a lot in terms
of noise, color accuracy etc. However, it allows the game to be delivered in
digital form via the project’s website, with no physical gadgets packaged with
it.

The computer vision was programmed in C++ in both Ujo Sankari and
QuiQui’s Giant Bounce. Other than that, the games combine several software
technologies. More information about the software implementation can be
found in Appendix A.

3 The interaction design of the flying game 24

3.1.4 Computer vision and its problems in Ujo Sankari

Ujo Sankari is an example of using simple computer vision in an artistic instal-
lation. Although the technology works in an installation, it would be problem-
atic in software targeted for children in real-life environments. Identifying and
solving the problems was perhaps the biggest challenge in developing QuiQui’s
Giant Bounce. The author programmed Ujo Sankari on a whim in two nights,
but developing the computer vision for QuiQui took several months.

The computer vision in Ujo Sankari is based on a technique called back-
ground subtraction. When the game starts, the first frame of the camera input
is saved in the computer’s memory. It is assumed that the frame contains only
a static background image without any users, as shown in Figure 3.2a. For each
subsequent frame, a difference image [41] is computed, shown in Figure 3.2b.
The intensity of each pixel in the difference image equals the absolute value
of the difference between the intensities of the frame and the background. Fi-
nally, the difference image is thresholded, as shown in Figure 3.2c. The output
of the thresholding at each pixel is one if the intensity of the pixel is greater
than a threshold value and otherwise zero.

-

Figure 3.2: The computer vision in Ujo Sankari, from top-left to bottom-right:
a) the background, b) a frame showing the user, ¢) the difference image, d) the
thresholded difference image, with a cross marking the location of the user’s
head.

3 The interaction design of the flying game 25

The information needed for Ujo Sankari can be computed from the thresh-
olded difference image. All that is needed are the X and Y coordinates of
the user’s head. If it is assumed that all nonzero pixels belong to the user
and the user’s hands stay lower than his or her head, the coordinates of the
topmost nonzero pixel can be used, marked with a cross in Figure 3.2d. When
the user’s head moves up, the avatar jumps at a speed equal to the head. The
horizontal position of the head controls the horizontal airspeed of the avatar.
Thus, the character can be controlled by jumping or running in situ.

Considering QuiQui’s Giant Bounce, the following problems were identified
in Ujo Sankari:

1. The use of background subtraction means that the game must obtain a
clean sample of the background. When the game starts, the user must
not stand in front of the camera, which is not desirable if a five-year-
old child is using the game without adult supervision. A child might not
understand or remember the instructions. Using background subtraction
also requires that the background and lighting stay constant and the
camera does not move during the game.

2. The threshold value had to be set by hand. This is too technical for the
target group. All such settings should be done automatically.

3. Due to the noisy image of the webcam used, Ujo Sankari sometimes
jumped spontaneously when the noise exceeded the threshold value. The
game should perform image filtering or other operations to reduce noise.
The analysis should also be based on larger scale features than a single
pixel to reduce the game’s sensitivity to noise.

3.1.5 Related work

Modelling human perception

The scientific literature reveals much work done in the field of perceptual user
interfaces based on computer vision and hearing. In general, current computer
vision and hearing technology is far behind human perception. Although much
can be learned from testing with human and animal subjects, all stages of
perception cannot yet be modelled.

The most well known area is the image processing done by the brain, mea-
sured with single-cell recordings from live brains. Single-cell recordings are
done by placing electrodes directly in the brain to record the response of a
neuron or a group of neurons to a visual stimulus [37]. For example, certain
neurons have been found to respond to edges at a certain ‘pixel’; that is, a

3 The interaction design of the flying game 26

retinal location of the visual field. However, single-cell recordings only give
information of one stage in the perceptual process.

According to Goldstein [25], the perceptual process is a chain that goes
from receptor stimulus to action through stages such as neural processing,
perception and recognition. Laboratory tests can only give information about
neural processing and action. Perception and recognition, such as categorizing
objects and understanding emotions conveyed by facial expressions, are beyond
direct measurements.

In practice, working computer vision systems may partly model human per-
ception, but they are also engineered to exploit whatever a priori knowledge
there is available about the application and the problem domain. For example,
Ujo Sankari first performs a couple of simple image processing functions, sim-
ilar in complexity to those performed by the first stages of the human visual
system, and then interprets the data under very strict assumptions. Finally, a
single pixel of the image is chosen to represent the user and all other data is
discarded.

Perceptually interactive systems

The first perceptually interactive system the author knows of was not a game
but a digital musical instrument called DIMI-O, developed as early as 1971
by Erkki Kureniemi [34]. DIMI-O featured musical synthesis controlled by the
video signal of a video camera. Another early example is the camera based
motion tracker system VNS (Very Nervous System) by media installation artist
David Rockeby [8]. Rockeby created his first motion tracking systems in 1983
and has been improving them ever since, moving from dedicated hardware to
software implementations (soft VNS).

QuiQui’s Giant Bounce is closely related for example to Perceptive Spaces
and other physically interactive story environments developed at MIT Me-
dia lab [38][45]. These include several applications where one or multiple
human users are tracked. The sensory data is used to control a graphical
representation of the user or the reactions of the other characters. Probably
the most widely known project is KidsRoom, a large-scale installation where
a room is transformed magically into an adventure using several cameras, two
background-projected walls and theatrical lighting. In KidsRoom, children can
for example pretend that a bed is a boat that floats in a river projected on the
walls. The boat is moved by rowing in the air when sitting on the bed. How-
ever, the MIT projects do not combine voice and movement in the same way
as QuiQui’s Giant Bounce does. Voice is used as spoken commands instead of
using it to control a character. For example the adventure in KidsRoom starts
when a user utters a magic word.

3 The interaction design of the flying game 27

Although the literature at first seems vast, there is little written about
designing perceptual computer games and user interfaces for child users in
uncontrolled real-life environments, such as homes and daycare centers. Most
systems need some adjustments or initialization done by the users or assume
that the background is static like in Ujo Sankari. The games developed by Intel
and Mattel [18] come close to what we aimed for, but they still have usability
defects, such as voice prompts that instruct the user to step aside so that
the computer vision can be properly initialized. The games use background
subtraction to embed the image of the user into computer graphics, as shown in
Figure 3.3. Compared to QuiQui, the games are also designed for the IntelPlay
Me2Cam instead of supporting various camera models.

Figure 3.3: An example of the “video avatar” games 18|

Considering game applications, QuiQui’s peers can be divided into two
categories based on the user’s representation in the game. In the first category
are the Intel and Mattel style games that use a “video avatar”, that is, the video
image of the user or a part of it is directly interacting with computer graphics.
In addition to Intel and Mattel, similar games have been produced by Vivid
Group, targeted for example for amusement parks [1]. Although Vivid Group
claims have a patent on the approach, awarded in 1996, the approach was
experimented with as early as 1984 in Myron Krueger’s pioneering work Video
Place [33]. Video Place allowed the silhouettes (monochrome images) of two

users to interact with each other and computer graphics, as shown in Figure
3.4.

The alternative to a video avatar is a computer-generated avatar, such as
QuiQui. The avatar mimics the user’s movements or reacts to them. In general
terms, we are talking about computer vision based human motion capture,
which has been researched intensively, as seen for example in Moeslund’s survey
of more than 130 related papers [35]. However, the solutions presented in the

3 The interaction design of the flying game

Figure 3.4: Examples of the Video Place by Myron Krueger [9]

literature do not seem to meet the requirements of QuiQui’s target group
and environment of use. There seem to be no solutions for totally automatic
tracking of the user’s body in unpredictable environments.

Fortunately, games often restrict the variety of possible movements so that
full tracking of the user’s body is not needed. For example in Ujo Sankari, the
motion is restricted to jumping so that the game only needs an approximation
of the position of the user’s head. In the scientific literature, Freeman et al.
describe several computer vision based game user interfaces that exploit the
game context in this way [22][23||21]. One example close to QuiQui is the
decathlon game Decathlete, shown in Figure 3.5.

Compared to QuiQui’s Giant Bounce, Freeman’s experiments used special
camera and computer vision hardware instead of general purpose cameras.
The user interfaces were also mainly designed for existing games normally
played with a traditional user interface, such as a game pad. This is restricted
compared to designing the game and user interface together. For example, in
games where the avatar jumps when the user presses a button, the height of
the jump is usually constant. A perceptual user interface should allow the user
to jump to different heights, which requires that more control information is
extracted from the user’s movements.

3 The interaction design of the flying game 29

Figure 3.5: The Decathlete game user interface by Freeman et al. [21]

3.2 Requirements and assumptions

When designing the user interface for the QuiQui’s Giant Bounce prototype,
the first step was to define the following set of requirements so that the tech-
nical solution would not sacrifice usability and approachability:

1. Completely automatic operation without any learning stages, initializa-
tion or settings that need user participation. Our goal is that children
can use the game without adult guidance.

2. The methods must adapt rapidly to changes in the environment, includ-
ing lighting and camera position.

3. The methods must adapt to the differences in various camera models,
including frame rates in the range of 15...30 fps, noise, motion blur and
color resolution.

4. The system responds with as low latency as possible.

5. The system must tolerate several visible users, either one player and
viewers or several users participating collaboratively.

6. The user does not have to wear any specific clothing or markers.

7. As low computational complexity as possible to enable maximal compu-
tational resources for the actual game application.

The requirements are based on the experience from Ujo Sankari and the
three requirements for human-centered perceptual user interfaces by Crowley
et al.: robustness and autonomy, low latency and privacy protection [17]. As
Crowley et al. put it, “Usability determines the requirements for technological

3 The interaction design of the flying game 30

innovation” Note that privacy protection is not an issue here since it mainly
applies to multi-user applications and the video footage of the user is not stored
in QuiQui’s Giant Bounce.

Requirements 1 and 2 rule out many of the existing computer vision sys-
tems, for example all the systems based on an assumption of a constant or
almost constant background. This includes the technology behind Intel and
Mattel’s games [18], most of the MIT Media lab experiments mentioned, sev-
eral of the experiments by Freeman and also the only webcam based game
study the author knows of [39]. Assuming a constant background is lucrative
for computer games, because a two-dimensional silhouette of the user can be
obtained using background subtraction, as done in Ujo Sankari. Once a silhou-
ette is obtained, simple shape recognition techniques can be applied to produce
the control signals needed for a variety of games, as shown by Freeman et al.
[22]23][21].

Requirements 1 and 2 are based on the fact that our target group is illit-
erate and technically incompetent, which makes it difficult for the software to
instruct the user. Unexpected changes in the environment do happen when
the system is used at homes and the users are children, as D’Hooge points
out [18]. Our own usability tests also verify this. Intel and Mattel use voice
prompts to guide the user to step away from the camera view for initialization
[18], but we find that awkward.

Requirement 3 has severe implications on computer vision methods. Low
color resolution, noise, and unpredictable, often automatically controlled color
settings such as white balance imply that color based skin and face detectors
(see for example Bradski [16]), cannot be used reliably. Fitting curves to image
contours (see for example Blake and Isard [15]) is unreliable because of noise
and motion blur.

Low frame rates also decrease the accuracy of predictive methods. In com-
puter vision, analysis is often based on predictions, such as the probable area
where to search for certain features. The predictions are based on a priori
knowledge and the analysis of previous frames. If the frame rate is low or the
camera drops frames, as is possible at least in the Windows operating system,
the motion of the user may have sudden changes. The motion itself is also
not always predictable. For example in a platform jumping game, the user
may stay still, waiting for the right moment, and then suddenly bounce in
any direction. An example of the amount of motion blur and changes between
successive frames is shown in Figure 3.6. The figure contains two frames of a
jumping user recorded with a Logitech Quickcam Express webcam in daytime
home conditions.

Requirement 4 rules out various gesture recognition methods that recognize
movements after they have been completed. Low latency is important for the

3 The interaction design of the flying game 31

overall responsiveness of the game. For example, in a game played by jumping,
latency can cause the virtual world to feel sticky, as if the avatar was standing
in a pool of thick mud.

Figure 3.6: Two successive frames captured by a webcam when the user is
jumping

Requirement 5 is based on our usability tests and the findings of Inkpen et
al. [29] and Stewart et al. [42]. It appears that gaming is a social event for
children. It is hard to restrict the situation to one visible user since the others
want to watch, standing or sitting beside the main player or crouching on the
floor. In our tests, children also liked playing the flying game together with a
friend, so collaborative operation should be supported when possible.

Requirement 6 further restricts the computer vision methods. It is defined
to enable more convenient collaborative play and the delivery of the game in
digital form as a simple downloadable software package.

Adding requirement 7 to all the previous ones, one may wonder what is
possible in practice. Fortunately, game applications allow many contextual
simplifications. We use the following assumptions:

1. The background is temporally “piecewise” constant. If there are changes,
they are either immediate or very slow and gradual. This includes
changes in lighting, sudden movements of the camera (if a child for ex-
ample bumps into the table on which the camera is placed), and changes
in the physical environment, like closing or opening a door. According to
our experience, it also includes automatic adjustments of exposure and
gain done by the webcam drivers, since they usually happen slowly or in
discrete steps.

2. The user’s movements are restricted. The user faces the camera because
the camera is mounted near the screen. Distance from the camera is
limited because the user must be close enough to the screen to see the
graphics and also because there is a limited amount of space available at

3 The interaction design of the flying game 32

people’s homes. Because of the spatial constraints the user’s legs do not
necessarily fit into the camera view and we restrict the tracking to the
upper body of a standing user, a convention also used by Intel and Mattel
[18]. The movements are also often restricted to a set specific to the game
context, a principle often exploited by Freeman et al. [23][21]|22].

3. If there are more than one people visible, the user is not severely occluded
by others. This is natural since the user usually wants a clear line of sight
to the computer and thus to the camera.

4. Responsiveness is more important than correct tracking of the user. It
doesn’t matter if the game can be “cheated” using movements other than
intended, as long as controlling the avatar is most convenient using the
intended movements so that the “right” way of moving is encouraged.

In the author’s opinion, assumption 4 is the key to designing practical
computer vision and hearing methods for perceptually interactive games. In
our tests with children, we have noted that the game experience is generally
not degraded if the player can cheat the game. Many times it only challenges
the child’s creativity. When testing an early prototype of the flying game, a six
year old girl started experimenting with different movements. In the interview
after the testing she stated: “The best way to get up in the air is to first flap
your hands and then you can jump up and down.” She was clearly satisfied
about her finding. The negative side is that the feedback given by the game
can be confusing when the user is learning to play the game.

3.3 Design and testing of the user interface

The following treatment is focused on the human-avatar interface, the mapping
of the user’s actions to the avatar’s actions and the technology behind this.
The overall game design and the avatar-virtual interface are beyond the scope
of this paper. The term avatar-virtual is used here to denote the means of
interaction between the avatar and the game world, the design of which is
closer to user interface and usability design in general, including metaphors,
logic, information design etc.

In the context of computer games, the definition of usability is rather vague
(see for example the discussion in ACM CHI-WEB archives [10]). The basic
contradiction is that a good user interface tries to make things easier for the
user, but computer games are played largely because of the challenge they
present. Games are not software tools used to get things done effectively,
although they can contain tool-like parts, such as the main menu of the proto-
type. Our view is that the human-avatar interface should be as intuitive and

3 The interaction design of the flying game 33

transparent as possible so that it lets the user think and act from the point of
view of the avatar. It certainly is a usability issue, if the user, as his or her
real-world self, does not know how to move so that the avatar flies to a certain
direction. On the other hand, the avatar’s interaction with the game world
can be challenging. It is not necessarily a usability problem, if the user, as
the avatar, must struggle to jump high enough to get over an obstacle in the
game.

Note that the division into human-avatar and avatar-virtual interfaces is
not clear when considering game physics. Game physics are the general laws
controlling the avatar’s movement in the virtual world. The game physics
largely define the overall feel of the user interface, described with adjectives
like light, heavy, fast, slow etc. Variables such as gravity have an effect on
how the avatar reacts to the user’s movements. However, they also have an
effect on how the avatar interacts with the game world. Properly designed
game physics should increase the feeling of being in control of the game. On
the other hand, in games like Liero [11], the game physics constitute the main
challenge and enjoyment of the game. The physics are adjusted so that the
game requires lightning fast reflexes and decisions when the avatar is flying
through the air or swinging at the end of a rope.

In general, it seems that the human-avatar interface is designed to be as
simple as possible, with the exception of games like Tomb Raider [4] or Die
By The Sword [12]. Those games offer increased realism with a more complex
and expressive interface that enables actions such as somersaults or separate
control of the avatar’s upper and lower bodies.

QuiQui’s Giant Bounce uses simple sets of movements that vary according
to the game task (sub-game). The user interface design is based on the game
design and narrative. In the flying game of the prototype, the basic setting we
started with was that QuiQui has to help a yellow watering can to water the
dry desert. This is done by flying through the clouds in the sky to make them
rain. QuiQui holds a pair of big leaves in his hands so that they act like wings.
The game starts with a metaphorical instruction spoken by the watering can
“Flap your hands like a bird to fly up in the sky”.

3.3.1 Methodology: usability testing with functional pro-
totypes

The basic design method used was to experiment with technology and pro-
duce a simple, but interactive prototype. The prototype was then tested with
children. If the prototype did not work, the children were observed to find out
how they tried move to use the prototype. If a certain way of moving was tried
frequently, as in the case of the flying game, it was considered to be the most

3 The interaction design of the flying game 34

intuitive way of moving for the children. The interaction and technical design
was then modified to match it.

Among others, Druin [19] and Hanna et al. [26] have written about col-
laborative design and usability testing with children. Druin et al. present a
method called Cooperative Inquiry for incorporating children in the design pro-
cess, for example through collaborative low-tech prototyping sessions. Hanna
et al. give guidelines for adapting conventional usability testing methodology
for children.

Since we were interested in aspects such as the intuitiveness of the user
interface, we adopted an approach of iterative usability testing and interviews
with users that are new to the game. Druin suggests a long-term relationship
with a group of children [19], but in our case such an approach would be more
fruitful in overall design of the game or for example the story and character
design.

The main testing method used was peer tutoring, a method for children’s
education adapted for usability testing by Johanna Hoysniemi [27|. The test
was started with the metaphorical instructions and with instructions to fly
through all the clouds. After that the test subjects tried to learn to fly and
they were instructed only if they were not successful or seemed frustrated.
After a test subject had played the game a couple of times, it was his or her
turn to teach the next child to play. We used two approaches, one where
one child tutor instructed one child tutee and one where two child tutors
instructed one child tutee. The peer tutoring approach was used because we
wanted the children be able to teach other children how to use the game, which
is important in social settings, such as schools.

The tests were conducted at homes, and at a combined preschool and
school. The tests were videotaped to record the movements and gestures of the
users. The tests were done using perceptually interactive prototypes, initially
with more simplifications than in the final version. Although there has lately
been some research on prototyping tools for perceptual user interfaces [40],
they are more suitable, for example, for user interfaces where the user points
at things. In skill-and-action games such as the flying game, the interaction is
more fast-paced and prototyping is more difficult.

Two iterations of the user interface were produced based on two tests with
12 and 16 children. The subjects were of ages 5 to 9. In addition to the
second test, the final prototype has been tested informally with several users.
Informal tests were also used between the two usability tests to try out various
technical implementations of the second and final user interface. We also had
feedback from teachers and parents who downloaded and installed the game.

3 The interaction design of the flying game 35

3.3.2 Results of the testing

We evaluated the different iterations and technical implementations of the user
interface based on how quickly the users were able to fly through all the clouds.
Only the human-avatar interface was changed between the tests. Other aspects
of the game, such as the locations of the clouds, were not modified. The results
of the second test indicated that all the children were able to play the game
and the average playing time dropped to 66% of the first test. All children
learned to fly and could fly through all the clouds. The children also wanted
to play the game several times, which indicates that they liked the game. In
informal tests we also found out that the game is suitable for at least some
4-year-old children.

Interaction model

In addition to the conclusive results, the tests provided significant information
during the design process. In the first test, the most frequent reaction to the
metaphorical instructions was that the children waved their both hands to fly
and bent their upper bodies sideways to control the direction of the flying. In
the first prototype our initial suggestion was that the user would use only one
arm to fly sideways. This was changed to match the observations in order to
make the user interface more intuitive.

Technical design

From the point of view of technical design, the main point learned was that the
variety and flexibility of children’s movements are very difficult to anticipate,
even though certain ways of moving were more frequent than others. This
directed the computer vision methods towards analyzing holistic and rather
vague image features such as image moments instead of precise tracking of the

user. Examples of the various ways the children moved are shown in Figure
3.7.

Spatial design: the Magic Square

We also encountered problems with the spatial design of the user interface.
Because of the limited space available at schools and especially at homes, it
is difficult to place the camera so that the user is always visible. Instead, the
user must be guided to stay within the view of the camera. This is problematic
especially when an exact one-to-one mapping between the user and the avatar
is not possible. When the avatar is flying in the air, there is no intuitive
mapping for the user moving sideways. Because of this, there is a gap in the

3 The interaction design of the flying game 36

feedback of the user interface, and the user can accidentally step out of the
camera view. This happened several times in the usability tests.

The problem was initially tackled with the small camera window in the
bottom left corner of the screen. It helps in verifying that the user is positioned
correctly, but we found out that it was hard for the test users to monitor
their position. It appears that the camera view is mainly helpful for adults
in determining the correct placement of the camera. In general, the younger
the users, the easier they forgot that they should stay near a certain optimal
location.

Figure 3.7: Test users learning to fly. Note that the figures at the bottom are
blurred because of the rapid movements of the user

We did not want to abandon the concept of a flying avatar. Also, we did
not want to set any additional technical constraints for the game, such as a
specific camera model with a wide enough field of view. Fortunately, Johanna
Hoysniemi came up with the idea of a “magic square” marked on the floor
with marker tape. Our tests show that this considerably helps the children to
remember the spatial constraints. They seemed to understand it easily when
we explained that “you must stand in the magic square so that the eye of the
computer (the camera) can see you.” This instruction was usually the first one
given when the children explained each other how to play the game.

3 The interaction design of the flying game 37

Although adults might regard things like magic squares as cheap compro-
mises or cheating, ‘magic’ seems like a useful concept when designing children’s
technology. It is important and natural in children’s fantasy and play. An-
other good example of using magic to overcome difficult design constraints is
given by Druin [20]. She describes how hand-held “magic keys” were designed
for a collaborative finger painting system. The system required that each user
touches a device that identifies him or her. The technology manufacturer’s
original solution was that each user sits on a special pad while drawing, which
was not natural for the children participating in the design.

To summarize, one may expect space-related problems if the avatar and the
user move differently and also because of limited playing space and the field of
view of the camera. The magic square is not necessarily the right solution for
all games. For example, in a platform jumping game, a direct mapping between
the user’s and avatar’s horizontal positions could be used, but it would confine
the avatar inside a certain area. One solution is to map the location of the user
to the avatar’s velocity, that is, to map physical variables to the derivatives of
their virtual counterparts. This approach was used in Ujo Sankari as well as
the MIT Media Lab SURVIVE system [45]. In SURVIVE, the user plays the
game Quake with a motion tracked mockup of a gun, standing in front of a
large screen.

Cognitive load and feedback to the user

We also encountered problems that were apparently caused by the high cog-
nitive load of the user interface. The main observation was that it is hard
to get the user’s attention when he or she is learning to fly. The user is also
further away from the screen than in traditional computer games, so that the
graphics must be scaled, making the avatar larger in relation to the size of
the screen. This complicates things as the user has less time to react when
flying around. Although we tried to keep the visual appearance of the game
as simple as possible, there was so much happening that the test users did not
notice everything. For example, the users did not always notice the raindrop
symbols in the top right corner of the screen.

In the prototype, we have not yet found any general solutions to provide
feedback that would catch the user’s attention inevitably. It seems that rather
extreme techniques might be needed, such as cinematic close-ups of important
events.

3 The interaction design of the flying game 38

3.4 Technical design and implementation

This section describes and evaluates the technical design and implementation,
including the game physics, computer hearing and computer vision. The design
is an example of a simple and practical technical solution that relies on the
requirements and assumptions presented.

The general design principle is to use as low-level features of the image
and sound data as possible, considering the game context. An example of
a low-level image feature is the center of mass, in contrast to a high-level
interpretation such as three-dimensional pose of the user.

The more decisions and interpretations are made, the more there are chances
for errors. Since the environment of use and the actions of the child users are
unpredictable, it is difficult to ensure that the assumptions behind the deci-
sions and interpretations hold in every situation. A simple motion tracker that
interprets various movements as flying is better than a sophisticated tracker
that causes the avatar to fall down when it makes a false interpretation and
moves the avatar’s legs instead of its arms.

The treatment is more technical than the preceding chapters so the less
technically oriented readers may want to skip the mathematical formulae. The
principles of the solutions can be understood without mathematics, but the
formulae are provided for the sake of completeness.

3.4.1 Computer hearing

The computer hearing is the simplest part of the technology since the game
only needs to detect whether the user is shouting or not. In practice, the
prototype detects all loud sounds as shouting, but it does not matter because
falsely detected shouting has no negative consequences in the game. This is in
agreement with assumption 4 presented in Section 3.2.

The main benefit of the approach is computational simplicity. Children also
seem to have fun experimenting with different sounds. In one test with three
children, a boy found out that he could make QuiQui breath fire by clapping his
hands. After that, the other children tried it out enthusiastically. According
to our tests, especially young boys are excited about the voice interface.

Although the voice input mechanism is simple, it seems to increase the
excitement of the game and support the illusion of being a dragon. Because
of the direct mapping between shouting and breathing fire, the voice interface
does not alienate the user from the game. The interface allows the user to
express himself or herself as the avatar, as opposed to voice interfaces that
recognize commands spoken to the game.

3 The interaction design of the flying game 39

Technically speaking, shouting is detected by filtering and thresholding the
microphone input signal power. Simply detecting large input values is not
enough, because the game should adapt automatically to different levels of
background noise. The first step is to compute the signal power in each 50ms
window of audio samples delivered by the sound card’s capture driver:

P@ﬂ:}jﬂm% (3.1)

=1

where m is the window index, N is the window length in samples and z(n)
is the input signal. Since we are only interested in the signal power relative to
the power of the background noise, we filter the power using a first order IIR
highpass filter:

1 1 1-—
Bua(m) = 55 Pm) = o Pm =D 4+

ZHAm—l% (3.2)

where w is the cutoff frequency of the filter in the range 0...1. The filter
makes the game adapt to different levels of background noise. If the power
of the background noise stays constant or changes only slowly, the filtered
power Py,(m) is close to zero. When the user begins to shout, P,(m) peaks
and begins to decay exponentially as shown in Figure 3.8, with w = 0.1. A
threshold value 7" is used so that the avatar breathes fire as long as Pp,(m) > T

Treatments on the mathematical theory of digital filters can be found
in various digital signal processing textbooks (see e.g. Ifeachor and Jervis
[28]). However, the filter used is simple and can be understood with common
sense. Consider for example the case when w = 1. In that case the last term
;—gPhp(m — 1) of Equation 3.2 becomes zero and the filter’s output is deter-
mined by the first two terms. The output is simply the difference of the last
two input samples, scaled with 1/2. If the input signal changes to a constant
value, the filter’s output peaks for one sample and then stays at zero. Now
when w is decreased towards zero, the last term begins to have an effect on
the signal. It is an integrator term, because it adds the previous value of the
filter’s output to the current output value. In effect it acts as an opposing
force to the first two differentiation terms, trying to increase the magnitude of
the output if the input stays constant. When w = 0, the differentiation and
integration terms are ‘equally strong’ so that P,,(m) stays equal to P(m) if
they are equal initially.

3 The interaction design of the flying game 40

Microphone input signal

0.5

x(n)
=)

05 ! ! ! ! ! ! ! !
0

Normal and highpass—filtered signal power
60

—— Php(m)

40

20

0 ——— \f\/\\/¥4\

10 20 30 40 50 60 70 80

Figure 3.8: The operation of the digital filter used in the computer hearing

3.4.2 Game physics

The game physics for the avatar had to be designed before the computer vision,
since they determine the control signals that need to be computed from the
user’s movements. The solution uses basic Newtonian mechanics, although
interpreted rather loosely. When designing game physics, the real laws of
physics are merely exemplary conceptual tools.

QuiQui is modelled as two masses connected by a weightless rod as shown
in Figure 3.9. Instead of the center of mass, the moments caused by the forces
F and G are computed relative to the origin which acts as a virtual point of
support. The force G denotes gravity and F' denotes the “thrust” force caused
by the user’s movements. The angle 3 between the vector F' and the rod equals
the angle between the user’s spine and the vertical axis. This allows the user
to control the rotation of the avatar by bending sideways when flying. The
mass at the lower end of the avatar is further away from the origin so that it
causes the avatar to rotate back to upright position if the user is not moving.
Note that QuiQui is not flexible like the user. The animation simply has three
frames with hands held up, down and straight to left and right.

To update QuiQui’s position and the angle o, the game needs to compute
QuiQui’s velocity and angular velocity. These are computed from the well

3 The interaction design of the flying game 41

Figure 3.9: Physics of the flying avatar

known equations found in any physics textbook. The velocity is solved from
the force equation

dv
F=m— 3.3
> F=m_. (3.3)
or with the x and y components separated,
dv,,
F, = TR
> m
dv
Y F, = md—t-’f, (3.4)

that is, the sum of forces equals mass times acceleration which is defined
as the time derivative of velocity. The angular velocity w is solved from the
moment equation analogous to the force equation,

dw
M=J== .
> I (3.5)

that is, the sum of moments equals the moment of inertia times the angular
acceleration which is defined as the time derivative of angular velocity.

The physics are simulated by approximating the differentials with differ-
ences of the variables between successive simulation steps. In the case of
Equation 3.3, dv = v(n) — v/(n — 1) and dt = t(n) — t(n — 1), where n is the

3 The interaction design of the flying game 42

index of the simulation step. In the prototype, the simulation is carried out
once for each frame of the graphics. If F', m, the previous velocity v/(n—1) and
the time between successive simulation steps are known, the current velocity
v(n) can be solved from Equation 3.3.

The sum of forces is simply computed as

Z F, = Fcos(a+ (),
Y F, = Fsin(a+) -2G. (3.6)

However, computing the moments is not done ‘by the book’. A moment
caused by a force equals the force times the distance of the force vector from
the rotational center. Considering the mass at the lower end of the rod in
Figure 3.9, its moment equals M; = Gricosa. The moment is zero when
QuiQui is in an upward position and increases when QuiQui rotates, reaching
its maximum when QuiQui flies horizontally. However, this was found to be
too restrictive if the user wants to fly upside down, so the moment is actually
computed as

M; = min(d,4z, cos @)Gry for, (3.7)

where d,,. is an arbitrarily chosen constant, 0.2 in the prototype. The
moment is clipped to a maximum value before QuiQui reaches a horizontal
position. The sum of moments is then expressed as

Z M = Gfr(ry — ro) + sign(B) F's, (3.8)

where s is the distance of the vector F' from the origin. Computing s
requires some basic trigonometry, resulting in

_ rplsina — tan(a +) cos o
°T Vtan(a + 3)2 + 1 ' (39)

In addition to the user’s movements, the velocity and angular velocity
are affected by the game environment. After solving the velocity and angular
velocity from the force and moment equations, they are damped by multiplying
them with damping coefficients in the range 0...1. This roughly simulates the
air resistance of the game world.

To add a little bit directional stability, the velocity vector is rotated in
the direction of the angular velocity using the usual two-dimensional rotation
equations [32],

(n) = vg(n)cos ayer + vy(N) sin oo (3.10)

. (n) = Uy(”) COS ot — Um(”) SIN Ctyop - (311)

3 The interaction design of the flying game 43

The rotation angle is computed as

Qrot = frot(a(n) —a(n — 1)), (3.12)

where f,.; is the rotational coefficient, 0.175 in the prototype. The rotation
makes QuiQui behave a bit more like a boat in the water as opposed to the
simple masses and rod flying in the air, which feels more natural, at least in
the author’s opinion.

3.4.3 Computer vision

To make the system robust to changes in the environment, the basic approach
of the computer vision is differential motion analysis [41], based on intensity
differences between consecutive video frames (temporal difference). The in-
tensity differences are strongest at the parts of the frames containing motion.
Changes in lighting etc. cause only temporal disturbances in the system, op-
posite to the background subtraction used in Ujo Sankari. The same approach
has been used by Rockeby in various VNS versions |[8].

The drawback of using only the temporal difference data is that only the
moving parts of the user can be detected. Fortunately, the analysis is simplified
by the assumption that the movements of the user are limited to those relevant
to the game context. The system assumes that if the user is not simply standing
still or walking around, he or she is trying to fly.

In short, the computer vision of the prototype combines simple edge-based
shape classification with feature extraction based on image moments. The
shape classification is used to decide whether the user is flying or not. If the

user is flying, image moments are used to compute the angle of the user’s upper
body.

The analysis consists of the following four processing stages, operating on
8-bit grayscale images:

1. Reduction of resolution to 120x96 pixels with spatial averaging (lowpass
filtering) to reduce noise. The intensity of each output pixel is the average
of an 8x8 pixel area of the input. The video is originally captured at
320x240 pixels or the closest resolution supported by the camera drivers.

2. Temporal differencing. Each output pixel is the absolute value of the
difference of the corresponding input pixels of the last two input frames.

3. Thresholding. A threshold value is determined and pixel values below it
are considered as noise and set to zero.

3 The interaction design of the flying game 44

4. The image and the trajectory formed by its topmost nonzero pixels are
analyzed to determine the output variables used to update the game
physics.

Figure 3.10: The original input and the four processing states of the computer
vision (from left to right and top to bottom)

Figure 3.10 shows an example of the camera input and the outputs of the
processing stages. In the last image, the pose of the upper body is visualized
as a straight line and the topmost nonzero pixels are plotted with maximum
intensity. Note that the brightness of the images has been increased for better
printing quality.

The threshold value of stage 3 is determined using histogram-based thresh-
olding, various approaches to which are described by Sonka et al. [41]. A
histogram of the intensity values of the temporal difference is computed, as

3 The interaction design of the flying game 45

shown in Figure 3.11. The figure shows two examples of temporal difference
images with their histograms plotted at the bottom. The histogram is an array
where the element h; equals the number of pixels with the intensity 7. When
there is no movement, the histogram only shows the distribution of the tem-
poral difference of the background noise, seen as a narrow peak in the left side
of Figure 3.11. When the user moves, the histogram becomes wider and has
several local maxima and minima. The threshold is determined as the first
local minimum of the histogram when searching from the maximum towards
greater intensity values. According to our tests in various environments with
a total of seven different camera models, this seems to work sufficiently well.
Note that the images in Figure 3.11 are normalized for better printing quality.
Especially the left side image contains only low intensities and would otherwise
appear as a black square.

Figure 3.11: Computing the histogram from the temporal difference: his-
togram of noise with no movement (left) and the histogram with a user moving
in front of the camera (right)

The fourth stage of the processing is carried out in three steps. The first
step is to detect whether the user is doing something or standing still. The
criterion used is the number of nonzero pixels. The analysis is continued only
if the amount exceeds an experimentally determined value, currently half of
the image width.

The next step is to detect if the user is trying to fly instead of simply
walking around. A parabola is fitted to the topmost pixels of the image in
least-squares sense, as shown in Figure 3.12. When the user is walking, the
parabola usually fits well and its peak is located near the head of the user.
The analysis is not continued if the quadratic coefficient of the parabola is
negative enough and the peak of the parabola is horizontally near the center
of the detected topmost pixels.

The analysis of the angle § and force F' in Figure 3.9 is based on image
moments. Image moments are statistical characteristics that have been used
for computer vision based game user interfaces by Freeman and Sengupta et al.

3 The interaction design of the flying game 46

PR

Figure 3.12: Detecting a walking user

[23]|21][39]. An image moment of order (p+q) is computed as the summation
[41]

Mpg = Z Z aPyti(z,y), (3.13)

T=—00 Yy=—00

where i(x,y) is the pixel intensity at coordinates x and y.

For user interface purposes, moments up to second order can be computed
from the silhouette of the user to obtain estimates of the size, location and
orientation of the silhouette [23||21]. Freeman et al. also suggest that they
could be computed from the temporal difference |21]. However, in this case the
orientation information obtained from the moments is ambiguous, depending
on the parts of the user that are moving. The principal axis of the difference
may appear to be in the direction of the user’s hands as well as the user’s body.

Our solution for determining the pose of the upper body is to compute two
spatially biased mass centers from the thresholded temporal difference. We
use a left and right mass center, (s, Yierr) and (Trignt, Yright), marked with
short vertical lines in the last phase of Figure 3.10. The orientation of the
user’s shoulders is approximated with a line drawn through the centers, also
shown in the figure. The coordinates of the mass centers are computed from
moments up to third order, by weighing the pixels differently depending on
their position:

3 The interaction design of the flying game 47

Tright = Z ZE +y ZE y)
mght =1 y=1
Yright = ZZyw +y)i(z,y),
mght =1 y=1
Tieft = ZZI)? +y)i(z,y),
kleft =1 y=1
Yier = ZZ@/)2 +y)i(z,y), (3.14)
kleft =1 y—1

where h and w are the height and width of the image in pixels. The y
coordinates start from 1 at the bottom of the image, growing towards the top.
The scaling factors k equal the sum of the weights,

kright = ZZ(‘%‘ +y)(y)
Kiepe = ZZw((w)* +)iz, y). (3.15)

The formulae can be understood comparing them to the usual way of com-
puting a mass center, that is,

z=1 y=1
1 w h
Ye = Ezzyz<x’y)’
r=1 y=1
ke =) i(z,y). (3.16)
z=1 y=1

Compared to this, the left and right mass centers are computed by adding
the weight factors (z%+y) and ((w—z)*+y). Pixels with greater x-coordinates
are given more weight in the summation of the right mass center. The pixels
closer to the top of the image are also given more weight in both mass centers
to reduce the effect of the movement of the user’s lower body.

3 The interaction design of the flying game 48

The position of the hands can be impossible to detect accurately because
of motion blur, as seen in the top right corner of Figure 3.10. If the user’s
hands are moving fast enough, they can be perceived as an almost constant
area of movement in the temporal difference. If flying is detected, the hand
position information is changed by one animation frame according to the ver-
tical movement of the mass center of the temporal difference. According to
our tests this works sufficiently well.

Because of the ambiguity of the hand position information, the thrust force
F in Figure 3.9 cannot be computed from the angular velocity of the user’s
hands, although this would probably be the most intuitive interpretation. In-
stead, it is directly proportional to the amount of movement, measured as
the amount of non-zero pixels. This is clearly a weakness, because it makes
the system sensitive to changes in camera optics and the distance of the user.
However, considering a single setup of the game, these properties vary only
a little. The user can adjust the overall sensitivity of the game in the main
menu, which would be a useful feature even if the force could be determined
more accurately.

3.4.4 Evaluation of the technical design

The computer hearing and game physics seem to work well. They did not
cause any problems in the tests and the physics seem to allow quite natural
movement in the air. The computer vision is clearly the most complex and
challenging part of the design.

Because of the manual adjusting of the sensitivity of the computer vision,
requirement 1 presented in Section 3.2 is only partially fulfilled. The game
works with the default sensitivity, but in some cases it may feel too light or
heavy.

Requirements 2, 3, 4 and 6 are met because of the use of temporal dif-
ferencing and low-level image features. The system analyzes all movement,
regardless of shape, color etc. The latency of the system is only one video
frame.

Considering requirement 5, the presence of other people than the user does
not affect the game as long as they move less than the user so that the user
dominates the analysis. However, the game is sensitive to other movement
when the user wants to fall down and just stands still.

The system also supports collaborative play because the motion analysis
based on image moments is vague enough to treat several users as one. How-
ever, this requires that the users are standing close enough to each other and
flying in the same direction.

3 The interaction design of the flying game 49

Considering requirement 7, the computer vision is computationally efficient,
leaving most of the processing power of current personal computers for the
actual game. The implementation caused an increase of 10% in the CPU load
of our test system, compared to a bypassed situation, where a video stream
was captured and converted to grayscale, but not fed through the processing
stages described in this paper. The test system used was a 1 GHz Pentium III
Dell Inspiron 8100 laptop computer capturing video at 30 fps using a Creative
Video Blaster Webcam 5 camera.

Note that the system depends heavily on the assumption of the user facing
the camera, as stated in Section 3.2. In fact, the system assumes that the
user’s upper body and hands move in a plane perpendicular to the camera so
that their pose can be analyzed from the two-dimensional temporal difference
images using the mass centers. According to the usability tests, the assump-
tion holds in general, but in some occasions the children bent their bodies also
towards the camera, as shown in Figure 3.13. Although flying sideways be-
comes difficult in this case, the problem is not fatal. After trying for a while,
all children learned to control the game correctly.

Figure 3.13: Bending towards the camera instead of bending sideways (front).
Note that both children look towards the camera and the monitor.

To summarize, the computer vision solution has been proven to work and
enables an enjoyable game experience, although it is not perfect according to
the requirements defined. The main benefits of the approach are robustness
and simplicity. The main drawback is the dependency on the game context,
that is, the loss of generality. However, parts of the system can be also applied
to other user interfaces. For example, it seems generally useful to recognize
shapes from the edges of the temporal difference to derive data or conclusions
for other analysis and processing stages. Although only the moving parts of

3 The interaction design of the flying game 50

the user are visible in the temporal difference, some movements can be easily
recognized.

3.4.5 Dead ends: adaptive background models and active
contours

In the beginning of the project, other approaches were also tried. Although
background subtraction could not be used as such, adaptive background sub-
traction methods were tried. It seemed that the image could be divided into
the background and the silhouette of the user as in Ujo Sankari, provided that
the model of the background have some intelligence. It should, for example,
notice if a static object, such as a chair, is moved. This could cause a short
disturbance in the system, but after that the system should be able to treat
the chair as background again.

There are several adaptive or statistical background subtraction methods
described in the literature, of which Toyama et al. give a comprehensive
comparison when describing their Wallflower system [44]. The author experi-
mented with various methods, but the results were not good enough. However,
the author did not have time to implement and test all the methods. In general,
the source code or binary executables of the various systems described in com-
puter vision journals and conferences are rarely available and if they are, they
are often made for high-end hardware, such as Silicon Graphics workstations.

It seems that the fundamental problem of background modelling is that
pixel-by-pixel processing is not enough for user interface purposes. Background
modelling and subtraction is perhaps most often applied in surveillance systems
with a static camera. In surveillance image data, the background is only
occasionally covered by moving objects. This makes it possible to use a pixel-
wise statistical model, such as the median value of the intensities observed
in previous frames [41]. In QuiQui’s Giant Bounce, the user moves mostly
within a small area so that the background is revealed only occasionally, which
confuses the statistical models.

It seems that a working background model should combine several cues,
including pixel-wise statistics, motion and some model of the user. Although
the Wallflower system takes a step in this direction by combining pixel, region
and frame level processing, no perfect system exists to the author’s knowledge.
Background modelling for perceptual user interfaces remains a topic of further
research, since a working background model would make a versatile base on
which different user interfaces could be developed. In addition to that, camera
manufacturers should provide more comprehensive support for the Microsoft
DirectX camera control interfaces. The automatic gain and white balance
controls of several webcams complicate background modelling. In principle,

3 The interaction design of the flying game 51

they can be switched off programmatically using the DirectX API, but not all
cameras support that in practice.

Tracking of the user using active contours was also experimented, based
on the book by Blake and Isard [15], but working solutions were not reached.
Active contours are deformable shape models that are attracted to image fea-
tures, such as strong edges. In short, the algorithms presented by Blake and
[sard initialize an active contour to the outline of some object, such as the
hand in Figure 3.14. After the initialization, the scaling, rotation, translation
and other parameters of the contour are updated so that it is attracted to
strong image features found on a number of normals of the contour. The main
strength of the approach is that searching the features along the normals is
computationally quite efficient. Matching a model to all possible locations in
an image is not possible in real time, especially if the model has several degrees
of freedom, such as rotation and scaling in addition to translation.

Figure 3.14: Tracking a hand using active contours [13]

Initially, active contours seemed as a very promising tool for game user
interfaces. The main problems encountered were the motion blur in some
cameras and the complexity and flexibility of the human body. Although it
was easy to track the user’s head using an ellipse, the tracking sometimes
failed when the user made rapid and unpredictable movements. The ellipse
could then be stuck to other image features, such as background objects or
the user’s hand, which would be disastrous in a game situation. The author
initially reasoned that all that would be needed was a more complex model,
adding hinged extensions for the user’s shoulders and hands. It turned out that
this only made things worse, since the model had more degrees of freedom and
could fit more easily to wrong places in the image. It is also very difficult to
design a precise model, considering the variety of children’s movements, shown
in Figure 3.7.

3 The interaction design of the flying game 52

Note that the decisive factor against using active contours was the motion
blur of several low-cost cameras. With sufficiently high quality cameras, active
contours could work in game user interfaces, at least as a part of a larger
computer vision system, for example when used together with background
modelling.

4 Conclusions 53

4 Conclusions

This thesis described the concept and interaction design of a perceptually
interactive computer game for children. The thesis also described a working
prototype that implemented the relevant ideas, including a multimodal percep-
tual user interface and the underlying computer vision and hearing technology.
The prototype won the Pikku Kakkonen category in the mindTrek 2001 com-
petition (best children’s multimedia) and it was selected among the 14 winners
of the Milia New Talent competition 2002. The project has also had a lot of
positive publicity in the media, including several newspaper articles and two
appearances on national television.

The computer vision of the prototype combines several methods from the
scientific literature with original work, such as using third order image mo-
ments and classification of motion based on the contours of thresholded tem-
poral difference. The technology is designed from the point of view of usability.
The design is based on a set of requirements and assumptions presented, de-
fined considering the target group and environment of use.

The target group was incorporated in the design via iterative usability tests
and interviews conducted with children. In general, the prototype was found
to fulfill the defined requirements, although it is not perfect. The computer
vision solution is highly specific to the flying game and sometimes the game
may feel too heavy or light, depending on the environment and how the user
is trying to fly. Children liked the prototype in the tests and often wanted to
play it through several times.

In addition to the technical solution, this thesis describes the concept and
the interaction design on a more general level. The author believes that the
concept has several new ideas, since there are only a few earlier experiments of
perceptually interactive computer games for children. The thesis also describes
interesting observations from the usability tests, for example, relating to the
spatial design of perceptual user interfaces.

The author was also responsible for the sound design of the prototype,
although it was only a minor task compared to the interaction design. The
author is quite satisfied with the results, consisting of two songs, one musical
ambient sound track and the sound effects of the flying game.

4 Conclusions 54

Several novel applications of perceptual or other camera-based user inter-
faces will probably appear in the future, as desktop cameras become more
common and their possibilities in user interface design are fully realized. In
QuiQui’s Giant Bounce, the camera was originally intended only for playing,
but we also noticed that it could enable creating user profiles without the
need of typing in one’s name. The camera view of the user as a part of the
screen graphics also makes it natural to explain things with examples, using
prerecorded sequences of other users. QuiQui’s Giant Bounce has also inspired
other camera-based software, including the author’s current project Animaa-
tiokone (http://animaatiokone.net). Animaatiokone is an installation based
on a simple tool for capturing and editing stop-motion animation, originally
created for animating the characters of QuiQui’s Giant Bounce.

Bibliography 55

Bibliography

1]
2|

13l

4]
[5]

[6]
17l

18]
19]

[10]

[11]
[12]

[13]
[14]

[15]

http:/ /www.vividgroup.com, 4th May 2002.

http:/ /www. gamesdomain.com/playstation2/reviews,/
Jungle_ Book _Groove_ Party.html, 18th September 2002.

http:/ /www.stakes. fi/palvelut /palvelujen laatu/lapset /kirjamessusadut/
sadut.asp, 17th September 2002.

http:/ /www.tombraider.com, 5th September 2002.

http:/ /www. computer-music.com/articles/artcl_musical _techniques-
01.htm, 6th March 2002.

http:/ /www.thereminworld.com/learn.asp, 18th September 2002.

http:/ /www.cs.sfu.ca/ amulder/
personal/vmi/HMTT.pub.html, 1st Nov 2001.

http://homepage.mac.com/davidrokeby/home.html, 14th November 2002.

http://www.oelinger.de/maria/interact/videoplacel.htm, — 8th — October
2002.

http://www.listserv.acm.org/archives/wa.cqi?A2=ind0205E€ L~ chi-
web&D=06m—=107166P="720, 4th September 2002.

hitp:/ /www.lieroextreme.com, 5th September 2002.

http:/ /www.interplay.com/games/product.asp?GamelD=11/, 5th
September 2002.

http:/ /www.robots. ox.ac.uk/ ab/dynamics.html, 10th October 2002.

Directx 8.1 programmer’s reference, http://msdn.microsoft.com/library,
6th March 2002.

Andrew Blake and Michael Isard. Active Contours (Springer-Verlag Lon-
don Limited, 1998).

Bibliography 56

[16]

17]

18]

[19]

20]

21]

[22]

23]

[24]

[25]

[26]

[27]

28]

G.R. Bradski, Computer Vision Face Tracking For Use in a Perceptual
User Interface, Intel Technology Journal (1998).

J.L. Crowley, J. Coutaz, and F. Bérard, Things That See, Communica-
tions of the ACM 43 (2000).

H. D’Hooge, Game Design Principles for the IntelPlay Me2Cam Virtual
Game System, Intel Technology Journal (2001).

Allison Druin. Cooperative inquiry: Developing new technologies for chil-
dren with children. In Proceedings of CHI’99, pp. 592-599, 1999.

Allison Druin. Children as our technology design partners: The surprising
and the not-so-surprising. In Proceedings of International Workshop on
Interaction Design and Children, pp. 1-2, Eindhoven, The Netherlands,
2002.

W. T. Freeman, D. Anderson, P. Beardsley, C. Dodge, H. Kage,
K. Kyuma, Y. Miyake, M. Roth, K. Tanaka, C. Weissman, and W. Year-
azunis, Computer Vision for Interactive Computer Graphics, IEEE Com-
puter Graphics and Applications pp. 42-53 (1998).

W. T. Freeman, P. A. Beardsley, H. Kage, K. Tanaka, K. Kyuma, and
C. D. Weissman, Computer Vision for Computer Interaction, SIGGRAPH
Computer Graphics Newsletter 33 May 1999.

W. T. Freeman, K. Tanaka, J. Ohta, and K. Kyuma. Computer vision for
computer games. In Proceedings of IEEE 2nd Intl. Conf. on Automatic
Face and Gesture Recognition, 1996.

W. G. Gardner. Head tracked 3-D audio using loudspeakers. In Pro-
ceedings of Workshop on Applications of Signal Processing to Audio and
Acoustics (IEEE ASSP), 1997.

E. Bruce Goldstein. Sensation € Perception (Brooks/Cole Publishing
Company, 1999).

L. Hanna, K. Risden, and K. Alexander, Guidelines for Usability Testing
with Children, Interactions 4, 9-14 (1997).

Johanna Hoysniemi and Perttu Himéldinen. Using Peer Tutoring in Eval-
uating the Usability of a Physically Interactive Computer Game with Chil-
dren. In Proceedings of International Workshop on Interaction Design and
Children, pp. 1-2, Eindhoven, The Netherlands, 2002.

Emmanuelle C. Ifeachor and Barrie W. Jervis. Digital Signal Processing
A Practical Approach (Addison-Wesley, 1993).

Bibliography 57

29]

130]

[31]

32|

33]

[34]

[35]

[36]

137]

138

[39]

[40]

41

K. Inkpen, W. Ho-Ching, O. Kuederle, S. Scott, and G. Shoemaker. “This
is fun! We’re all best friends and we’re all playing.“: Supporting children’s

synchronous collaboration. In Proceedings of Computer Supported Col-
laborative Learning (CSCL) ’99, Stanford, C.A., 1999.

Jean-Marc Jot, Real-time spatial processing of sounds for music, multi-
media and interactive human-computer interfaces, Multimedia Systems 7,
55—69 (1999).

Ismo Karvinen. Lapsi ja urheilu perustietoa litkunnasta ja urheilusta oh-
jaagille, opettajille ja lasten vanhemmille (Otava, 1991).

Erwin Kreyzig. Advanced Engineering Mathematics, Seventh FEdition
(John Wiley & Sons, Inc., 1993).

M. Krueger, T. Gionfriddo, and K. Hinrichsen. VIDEOPLACE - An
Artificial Reality. In Proceedings of CHI 85, 1985.

Petri Kuljuntausta. ON/OFF Eetteriidnista sahkomusiikkiin (Like kus-
tannus ja Kiasma, 2002).

T.B. Moeslund, Computer vision-based human motion capture - a survey,
Technical report: Aalborg University, Laboratory of Computer Vision and
Media Technology (1999).

N. Oliver, A. P. Pentland, and F. Berard. LAFTER: lips and face real
time tracker. In Proceedings of Computer Vision and Pattern Recognition

(CVPR’97), pp. 123-129, 1997.

Stephen E. Palmer. Vision Science: Photons to Phenomenology (MIT
Press, 1999).

C.S. Pinhanez, A.D. Wilson, J.W. Davis, A.F. Bobick, S. Intille, B. Blum-
berg, and M.P. Johnson, Physically Interactive Story Environments, /IBM
Systems Journal 39.

K. Sengupta, H. Wong, and P. Kumar. Computer vision games using a
cheap (<100$) webcam. In Proceedings of 6th International Conference on
Control, Automation, Robotics and Vision (ICARCV’2000), Singapore,
2000.

A K. Sinha and J.A. Landay. Visually prototyping perceptual user inter-
faces through multimodal storyboarding. In Proceedings of Workshop on
Perceptual User Interfaces, Orlando, Florida, 2001.

M. Sonka, V. Hlavac, and R. Boyle, editors. Image Processing, Analy-
sis and Machine Vision, 2nd edition (Brooks/Cole Publishing Company,
1999).

Bibliography 58

42|

[43]

[44]

[45]

J. Stewart, B.B. Bederson, and A. Druin. Single display groupware: A
model for co-present collaboration. In Proceedings of CHI 99, pp. 286—
293, Orlando, Florida.

K. Subrahmanyam, R.E. Kraut, P.M. Greenfield, and E.F. Gross, The
Impact of Home Computer Use on Children’s Activities and Development,
Children and computer technology 10 (2000).

Kentaro Toyama, John Krumm, Barry Brumitt, and Brian Meyers.
Wallflower: Principles and Practice of Background Maintenance. In Pro-

ceedings of the Internal Conference on Computer Vision, Corfu, Greece,
1999.

C.R. Wren, F. Azarbayejani, A. Darrel, T. Davis, J. Starner, A. Kotani,
C. Chao, M. Hlavac, K. Russel, A. Bobick, and A. Pentland. Perceptive
spaces for performance and entertainment (revised). In Proceedings of
ATR Workshop on Virtual Environments, Kyoto, Japan, 1998.

A Software architecture of the prototype 59

A Software architecture of the
prototype

Computer games are comprised of several software systems. In addition to the
actual game behavior, the systems implement other features, such as drawing
the graphics or playing the sounds.

Usually it is not practical to program everything yourself. There are sev-
eral commercial libraries available, including graphics and sound engines as
well as whole development environments. Easy to use and versatile tools, such
as Macromedia Flash and Director, have not traditionally offered enough per-
formance for commercial game development, as opposed to the engines used
in games, such as Quake and Max Payne. However, this is changing as the
current version of Director already features hardware accelerated three dimen-
sional graphics.

The software tools used for QuiQui had the following requirements:

e Good quality end product in a short time and at low cost.
e Eree distribution of the game.

e The tools should support collaboration between programmers, sound de-
signers and visual designers. In practice this means that people can make
changes to files without affecting the work of others. The tools should
also minimize the need for converting files from one format to another.

e Efficient implementation of the video and audio processing.
e Small size of the game for delivery via the Internet.

e Use of two-dimensional cartoon graphics.

The architectural solution of the prototype is presented in Figure A.1. The
graphics were designed in Macromedia Flash 5 and the Flash 5 player was
used as a graphics engine. Flash is an efficient production environment for 2-
D graphics and there was no need to convert the image files to other formats.
The player is available free of charge from Macromedia’s website.

A Software architecture of the prototype 60

The game was not programmed in Flash because of the lack of a proper
debugger with breakpoints. The author was used to using breakpoints and
debugging ‘blindly’ was cumbersome in Ujo Sankari that was programmed in
Flash. The game was programmed in Borland Delphi 4 using Delphi object
Pascal. Delphi allows a Flash player to be easily integrated with the program as
an ActiveX component. Using Delphi also enabled more fluent collaboration
between the programmer (the author) and the visual artists (Teppo Rouvi
and Johanna Hoysniemi). Because the Flash movie clips did not contain any
scripting, they could be modified and replaced by the graphics designer. The
game program only requires that the Flash movie contains movie clip instances
with certain names. The game accesses the movie clips by their names to
change their coordinates, visibility, frame number etc.

The sound engine and perceptual computing, that is, the computer vision
and hearing were programmed using Microsoft Visual C++. The C+-+ lan-
guage is better suited for mathematical purposes and Delphi has no official
support for the Microsoft DirectX8 API needed for accessing the camera and
sound card drivers.

Data flows according to the arrows in Figure A.1. The raw video and audio
data is analyzed to provide the control signals for the game logic. The game
logic controls the sound engine and the Flash player.

In principle, the sounds could be played using Flash, but the sound output
functionality of Flash is rather limited. For example, Flash does not provide
means for altering the frequency of the played sound in realtime, an effect used
in the hairdryer sound of the windmill. The custom built sound engine used
the DirectX 8 API for sound output and the free Ogg Vorbis audio compression
technology from Xiphophorus. Ogg Vorbis enables the compression of audio
much like the popular MPEG-1 layer 3 (mp3) technology, but the software
libraries needed are available for free.

A Software architecture of the prototype

61

Camera Microphone Sound output

A
i Wideo signal i Audio signal DirectX-

APl

Perceptual processing (C++)

Perceptual signals, such as sound
level and body pose.

Game logic and the main program

{Delphi)
Coordinates etc. Zound commands, such as
playistop
Graphics engine Sound engine
(FlaSh 5 player (C++) Low level sound commands
i Audio data
Ogg Vorbis -
library

Figure A.1: A block diagram of the software architecture

B Computer vision source code 62

B Computer vision source code

This section contains the C-++ source code of the relevant methods of the
CFlyingSensor class that implements the computer vision methods described
in this thesis. The code is included to give a concrete example of what was
done for those not so familiar with programming and computer vision. Note
that the source code contains calls to image processing functions not printed
here, but the meaning of the calls is explained in the comments. The total
size of QuiQui’s Giant Bounce is about 6000 lines of code and it would be
impractical to include all the code in this thesis.

#include "math.h"

#include "flyingsensor.h"
#include "debugprintf.h"
#define ALGORITHM2

const int PROCESSWIDTH=120;
const int PROCESSHEIGHT=96;

/**

Test whether the input image (pointed to by pBuff) contains a flying user or not.
The input image is assumed to be a thresholded temporal difference image.

*/

bool CFlyingSensor::paraboloidCriteria(BYTE #pBuff, int width, int height, bool visualize){
int 1i;
float centerx;
float topx[1000],topy[1000];

//get the topmost non-zero pixels
int npixels=getTopPixels1C(pBuff,width,height-2,topx,topy,¢erx);
int topwidth=topx[npixels-1]-topx[0];

//plot the topmost pixels if needed
if (visualize)q{
for (i=0; i<npixels; i++)q{
putPixelilC(pBuff,width,height, topx[il,topy[il);
}
}

//prepare for curve fitting

float sig[1000];

for (i=0; i<npixels; i++)
sig[i]=10;

static float chisq,aal[6];

float olda3=aal[3];

int ial[6];

ia[1]=ia[2]=ia[3]=ia[4]=ia[5]=1;

B Computer vision source code 63

//fit a paraboloid to the tompost pixels
1fit(topx,topy,sig,npixels-1,aa,ia,3,&chisq,paraboloid); //fit a paraboloid

//if the quadratic coefficient aa[3] is negative enough and the x coordinate of the peak
//of the paraboloid is near to the center of the topmost pixels, the image probably
//contains a standing or walking user
if ((aa[3]<-0.05) && (fabs(-aa[2]/(2*aa[3])-centerx)<topwidth/4)){
DebugPrintf("x~2 factor %f\n", (double)aal3]);
plotPoly(pBuff,width,height,20,2,&aal[1],8);
return false;

}

//compute the direction of the thrust force from the vertical movement of the edge pixels
float yy=0;
for (i=0; i<npixels; i++)
yy+=topy[il;
yy/=npixels;
float ydiff=yy-cy;
Cy=yys
ydir=sign(ydiff);
return true;

}

const double pi=3.141592653589793;

/*%

Analyze the 24 bit RGB input image (pointed by pBuff) and update the following member variables so
that they can be queried by the host program:

force the "thrust" force
leftAngle, rightAngle the angles of the left and right arm

*/

void CFlyingSensor::processFrame(BYTE *pBuff,int width, int height, int deltaTime, bool visualize){
static int myDeltaTime=0;
//visualize=true;
//convert to black and white and smooth
conv3C1C(pBuff,pBuff,width,height);

//The sensoring algorithm does not actually need too high a sample rate, it can even lead
//poor performance since there may be not enough difference pixels. We simply drop frames
//according to the deltatime
deltaTime+=myDeltaTime;
if (deltaTime<1000/16){
conv1C3C(pBuff,pBuff,width,height);
myDeltaTime=deltaTime;
return;
}
myDeltaTime=0;

//copy to a temporary buffer and lowpass filter using a rectangular kermel
//(spatial averaging)

memcpy (temptemp,pBuff,width*height);
boxFilter1C(temptemp,width,height,8,3);

//downsample to reduce the amount of data to process
BYTE *origBuff=pBuff;

int origWidth=width,origHeight=height;
width=PROCESSWIDTH;

height=PROCESSHEIGHT;

//processBuff and prevFrame are instances of a dynamic buffer class. they reallocate the

B Computer vision source code 64

//buffer if its width and height change. We never know what image sizes the Windows
//capture drivers output.

processBuff.update(width,height);

prevFrame.update(width,height);

//stretchBlt1C(processBuff.buff,width,height,tempBuff.buff,origWidth,origHeight);
//stretchBlt1C scales the image
stretchBlt1C(processBuff.buff,width,height,temptemp,orighWidth,origHeight);
pBuff=processBuff.buff;

//compute the absolute value of the difference to previous frame
absDiffToPreviC(pBuff,prevFrame.buff,width,height);

//compute a histogram
int histogram[256];
hist1C(pBuff,histogram,width,height);

//find the first local minima of the histogram after the value
//corresponding to half of the amount of pixels (the basic assumption is
//that at least half of the difference image contains noise and no real
//moving objects)
int total=0;
static int thresh=127;
for (int i=0; i<256; i++){
total+=histogram[i];
if (total>=widthxheight/2)
break;
}
i++;
for (; i<254; i++){
total+=histogram[i];
//if a local minima is found, update the threshold
if (histogram[i]l<=histogram[i-1] &&
histogram[il<histogram[i+1]){
thresh=i;
break;

}

//Subtract the found value to reduce noise before any features are extracted
//note that the function clips negative values to zero
subConst1C(pBuff,thresh,width,height);

/*

//Compute mean and variance of the difference values from the histogram

double mean=0;

for (i=0; i<256; i++){
mean+=histogram[i];

}

mean/=widthxheight;

double variance=0;

for (i=0; i<256; i++){
variance+=histogram[i]*(mean-i)*(mean-i);

}

variance/=width¥height;

double stdev=sqrt(variance);

//Extract features only if standard deviation is large enough (not only noise)
if (stdev>3){*/

//Extract features only if enough difference pixels found
if (width¥height-total>width/2){
//check whether the user is flying or not
if (paraboloidCriteria(pBuff,width,height,visualize)){
//Assuming that the user is flying, compute two spatially biased mass
//centra so that the moving hands of the user attract them

B Computer vision source code

65

ULONG leftx=0,lefty=0,rightx=0,righty=0,
leftTot=0,rightTot=0,xx=0,yy=0,tot=0;
for (int y=0; y<height; y++){
BYTE *p=pBuff+y*width;
for (int x=0; x<width; x++){
int val=p[x];
if (val){
tot++;

//val*=val;
int w=(val*(x*x+height-y)) >> 4;
leftx+=x*w;
lefty+=y*w;
leftTot+=w;

w=(val*((width-x)*(width-x)+height-y)) >> 4;
rightx+=x*w;

righty+=y*w;

rightTot+=w;

xx+=x*val;

yy+=y*val;

}

//measure the height of the area containing most of the difference
//the square of this is used as a measure against which the amount of
//change is compared
int size=width*height;
int tot2=0;
int thr=tot/40;
for (i=0; i<size; i++){
if (pBuff[il){

tot2++;
if (tot2>thr)
break;
}
}
int yl1=i/width;
tot2=0;

for (i=size-1; i>=0; i--){
if (pBuff[il){
tot2++;
if (tot2>thr)
break;
}
}
int y2=i/width;
float relArea=(y2-y1)*(y2-y1)/2;
if (visualize)q
// drawLinelC(pBuff,width,height,0,y1l,width-1,y1);
// drawLinelC(pBuff,width,height,0,y2,width-1,y2);
}

//the slope of the line connecting the two centra determines

//user rotation

float oldcy=leftcy+rightcy;

if (leftTot>0 && rightTot>0){
leftx/=leftTot;
lefty/=leftTot;
rightx/=rightTot;
righty/=rightTot;
float ¢1=0.5,c2=0.5;
leftcx=cl*leftcx+c2*leftx;
leftcy=cl*leftcy+c2xlefty;
rightcx=cl*rightcx+c2*rightx;

B Computer vision source code

66

rightcy=cl*rightcy+c2*righty;

headAngle=-atan((leftcy-rightcy)/(rightcx-leftcx))*1.1;//1.25;
headAngle=min(pi/6,max(-pi/6,headAngle));
}

//compute the vertical direction of the movement
ydir=sign(leftcy+rightcy-oldcy);

//compute thrust force
float force;
force=min(relArea,tot)/(relArea); //normalized to 1
force=force*deltaTime/85; //added after testing with different cameras
if (ydir>0)

force=forcex0.3; //force is zero if wings move upwards
//DebugPrintf ("angle %f, force %f\n", (double)headAngle, (double)force);

float temp=forcex(1.0+cos(headAngle));
if (temp>rightForce)

rightForce=temp;
temp=force*(1.0-cos(headAngle));
if (temp>leftForce)

leftForce=temp;

//compute wing angles, incrementing or decrementing them depending on
//the direction of the movement
leftAngle=leftAngle+ydir*3.1415/4;
if (leftAngle>3.1415/4)
leftAngle=3.1415/4;
if (leftAngle<-3.1415/4)
leftAngle=-3.1415/4;

//in this version, we set the left and right angles to be equal
rightAngle=leftAngle;
}
}
//done processing, visualize
if (visualize){
drawLine1C(pBuff,width,height,
leftcx-(rightcx-leftcex),
leftcy-(rightcy-leftcy),
rightcx+(rightcx-leftcx),
rightcy+(rightcy-leftcy));
drawLinelC(pBuff,width,height,leftcx,leftcy-5,leftcx,leftcy+5);
drawLinelC(pBuff,width,height,rightcx,rightcy-5,rightcx,rightcy+5);

//scale back to the original size
stretchBlt1C(origBuff,origWidth,origHeight,processBuff.buff,width,height);
}

//convert the processed image back to 24 bit RGB for visualizing
conv1C3C(origBuff,origBuff,origWidth, origHeight);

C The synopsis behind the prototype 67

C The synopsis behind the
prototype

The following pages contain the synopsis used when designing the prototype.
It is written in Finnish by Laura Turkki. Included here in its original form, it
was originally written only for internal use of the project.

