
R.O. Briggs et al. (Eds.): CRIWG 2008, LNCS 5411, pp. 99–106, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Using Second Life in Programming's Communities of
Practice

Micaela Esteves1, Ricardo Antunes1, Benjamim Fonseca2, Leonel Morgado3,
and Paulo Martins3

1 Polytechnic Institute of Leiria, Ap. 4163, 2411-901, Leiria, Portugal
2 UTAD/CITAB, Ap. 1013, 5001-801, Vila Real, Portugal

3 UTAD/GECAD, Ap. 1013, 5001-801, Vila Real, Portugal
{micaela,antunes}@estg.ipleira.pt,
{benjaf,leonelm,pmartins}@utad.pt

Abstract. This paper presents a novel approach to teaching and learning com-
puter programming, using the three-dimensional virtual world Second Life® to
develop a programming community of practice. Our students have developed
their programming projects as part of this community as an alternative way of
learning. The learning of programming is a difficult process, with many
students experiencing difficulties which result in high levels of failure in intro-
ductory programming courses. In this paper, we describe and analyse how this
approach spurred students’ motivation and interest in learning programming.
We also present observations on the difficulties felt by both students and teach-
ers in the development of projects and activities, and discuss the approaches
taken to overcome those difficulties.

Keywords: Communities of practice, Collaboration, Programming learning,
Virtual worlds, Second Life.

1 Introduction

Learning how to program a computer is a hard task, and a diversified set of skills must be
learned for one to become a good programmer. Typically, when students initiate the
study of computer programming, they usually come across several difficulties, which are
then reflected in highs levels of failure in entry-level courses (commonly called “Com-
puter Science 1/2” or “Computer Programming 1/2”). Several research efforts have
sought to find the causes of this failure (e.g., [1], [2]). Amongst the reasons pointed out
by research are: lack of contextualization of the learning process [4]; the nature of tradi-
tional teaching method, based on lectures and specific programming language syntaxes
[3], and difficulties in understanding the basic concepts of programming, such as vari-
ables, data types or memory addresses [2-3], described as abstract concepts without an
equivalent representation in real life.

Compounded with these factors, we have a new generation of computer science
students for whom computers have been a constant presence in their lives, an impor-
tant tool, but don’t feel themselves motivated to learn computer programming [5].

100 M. Esteves et al.

They often don’t understand why they should write code, since there is a world of
complexity to be mastered just by combining applications and settings, by fiddling
with configuration files and formats. Also, typical computer environments and appli-
cations students employ as users are of a visual complexity and appeal far beyond
what students typically achieve on entry-level programming courses, a factor that
does not support self-motivation. On the other hand, the stereotype of a programming
student as someone that is alone, programming all night long, without social contact,
contributes to hinder student’s personal view of programming subjects and even shed
aside possible future careers related with it [5].

All the aspects mentioned above make the students feel and experience some dis-
orientation and lose interest in learning. Although students belong to a community –
the academic community – they “learn lonely and alone are tested” [4]. The vision of
having the students all connected as a network node, each contributing to another’s
learning while building personal knowledge[4], drove us to create a programming
community of practice in Second Life. The practical applications of the acquired
knowledge in the community, its reflection and exchange are some of the strategies
suggested by Fleury [6] and Dillenbourg [7].

In this paper, we present the result of two years of observations using Second Life
as a platform for teaching and learning computer programming, with the purpose of
identifying practical issues that teachers and students face in such approach, and ways
to overcome those issues. It was not our goal to compare this approach to others, since
we believe that any such evaluation depends on the educational methods and prac-
tices; and that the establishment of methods of practices requires educational practi-
tioners to be aware of the practical issues that may hinder or disrupt the educational
process. In the following section, we give an overview of the concept of communities
of practice, and in the second section, we present the research activities and analyse
the results (identified issues and approaches to overcome then). Finally, we present
some conclusions based on reflection upon the results.

2 Communities of Practice

“Communities of practice are everywhere and we are generally involved in a number
of them – whether that is at work, school, or in civic and leisure interests. In some
groups we are core members, in other we are more at the margins”, [9]. Within these
communities to which we belong, people share a common interest and join each other
in its pursuit, developing and learning practices and world-views in the process. The
practices may reflect activities, but also social relations.

These communities may have a formal or informal organization (formal communi-
ties of practice being those with regular meetings with predefined work, informal ones
all others, including those that may not even see themselves as a community). Typi-
cally, communities are organized around some particular area of knowledge / activity
that provide members a sense of joint enterprise and identity [9].

As stated by Wenger [8], there are three elements involved in defining a commu-
nity of practices (CP). One is the domain: the community must have a subject to talk
about. The second is a community of people that interact and thus facilitate the devel-
opment of relationships regarding the domain. A Web page is not a CP, or if there are

 Using Second Life in Programming's Communities of Practice 101

seventy managers that never talk with each other, they are not a CP, even if they have
the same functions. There must be a community of people, a sharing and construction
of knowledge. The third element is the set of practices (the “practice”): the commu-
nity must have a practice and not just a common interest that people share. They learn
together how to do the things they do (or want to do). And that learning involves
participation in the community. A participation that refers not just to local events of
engagement in certain activities with certain people, but to a more encompassing
process of being an active participant in the practices of social communities and con-
structing identities in relation to these communities [8].

According to Wenger [8], a community of practice is a good way to promote learn-
ing and good practices, not only because it develops knowledge in a living and
experimental way, but also because it helps participants reach solutions to possible
problems, with significant connections leading individuals to higher creative levels
than they could reach on their own [9]. A typical community is made up by different
levels of participation: central, active and peripheral. Initially, people join communi-
ties and learn at the periphery. As they become more competent they move more to
the “centre” of the community. According to Wenger [8], in order for a community of
practice to be successful it needs to motivate the participants’ involvement at the dif-
ferent levels, establishing the dialogue between the internal and external perspectives
of the community. The participation of external elements in a community is extremely
useful for the development of practices in that community as well as the integration of
the community itself in other groups.

3 Developed Activity

The main objective of this study is to find out if and how could SL be used as a plat-
form for teaching / learning the imperative programming language paradigm that is
commonly taught in college level computer science courses. For this purpose, we
have employed action research methodology. For this purpose, we create a commu-
nity of practice for teaching and learning computer programming in the Second Life
virtual world (SL), we provided to students elective alternative assignments on some
compulsory college-level subjects. This took place at two Portuguese Higher Educa-
tion institutions: the University of Trás-os-Montes e Alto Douro (UTAD) and the
Higher School of Engineering and Management of the Polytechnic Institute of Leiria
(ESTG). The subjects’ main aim is to allowing students to develop semester-long pro-
jects, to improve programming skills.

3.1 Methodology

In this study we have employed action research (AR) methodology, a cyclical process
approach that incorporates the four-step processes of planning, action, observing and
reflecting on results generated from a particular project or body of work [12].

The first action research cycle started by planning a model for teaching introduc-
tory programming concepts in SL. To that end, it was necessary to make a pre-
exploratory research and pre-observation with the goal of identifying problems and
planning actions [13]. Initial plans were formulated, and actions for their prosecution

102 M. Esteves et al.

were devised and implemented. While the action (teaching-learning) took place,
results were monitored for reflecting later on.

The data collected for the reflection step of the action research methodology was
based on daily session reports, classroom images and questionnaires. The reports,
written down by the teacher-researcher at the end of each session, describe what hap-
pened during the class, indicating all the critical incidents and its implications. Class-
room images (screenshots) have been taken in order to assist the teacher to review the
lesson when necessary, such as when a critical incident had happened. Questionnaires
with open questions concerning the learning / teaching method were presented to stu-
dents at the beginning, middle and end of the process, to provide further information
on the learning process. These elements are used as a tool to adjust and improve the
learning / teaching approach.

The final step in the first research cycle was reflection upon the outcomes and
based on them planning the next cycle. This goes on until the reflection of a cycle
showed that the problem was then solved or level of knowledge achieved is fixed. At
this point the study was concluded and a report was produced.

3.2 Programming Environment

The programming environment was SL itself, not any offline editor. SL is a persistent
on-line 3D virtual world conceived by Philip Rosedale in 1991 and is publicly avail-
able since 2003 [10]. It allows large numbers of users to connect, interact and collabo-
rate simultaneously at the same time and in the same (virtual) space. Figure 1 shows a
typical programming session in this research: we can see 6 avatars on black rugs
(students programming) and two other - teachers’ avatars.

Fig. 1. Typical programming session

SL programming is currently done with a scripting language named Linden Script-
ing Language (LSL), which has C-style syntax and keywords. 3D objects created in
SL can receive several scripts that are executed concurrently. Each script has its own
state machine: program flow is sequential, using common methods from imperative
programming, such as procedures and flow-control primitives, and structured in the
traditional way, via function definition and function calls, but also by triggering
events and responding to them (events can be raised either by environment interac-
tions such as object collision or programmatic components such as requesting a
server-based service). The programmer defines the states of each state-machine and

 Using Second Life in Programming's Communities of Practice 103

explicitly specifies when to switch state. The language’s programming libraries in-
clude functions and events both for SL-based results programming and for communi-
cation with external servers: sending and receiving e-mail, accepting XML remote
procedure calls, and handling HTTP requests and responses.

SL enables synchronous collaboration among students because the system permits
two or more avatars to edit the same object and include their own scripts, which act
concurrently on the object (and may exchange messages). Also, it is possible to share
scripts, so that students can access and edit the same piece of code while program-
ming it. By default, only the creator of an object or script has full access to it. Thus, to
share an object or script it’s necessary for the creator of the object to explicitly set its
permissions adequately. Figure 2 presents two avatars editing the same object (a car):
the left window shows the car’s contents, one being a script that is opened by double-
clicking.

Fig. 2. Two avatars sharing an object

One particular aspect of script sharing is that although several avatars may read
and change it, saving the script overwrites the current version. Initially, this is not
really a problem, because scripts are shared by the teacher and there is only a student
editing the script. But as the community evolves, students are able to contribute more
often and in larger numbers, and so coordination among participants is required. Chat
channels can be used to coordinate who is accessing and changing the script.

Asynchronous collaboration is also supported because the SL world is persistent.
Students and teachers may access and leave in-world objects and messages to the
other members (group messages and privates messages are supported). When a user
logs in all his/her messages are shown, and he/she can see any objects left in the
world by others (and edit them, if adequate permissions have been set).

3.3 Community Structure

Teachers were the community coordinators, so they defined the projects to be devel-
oped, encouraged and motivated the periphery students through the exchange of opin-
ions between members of the community, as well as sharing experiences of active
participants that were once in periphery.

The community had meetings about two hours per week in Second Life (SL), where
they developed their programming work and kept track of community’s progress,

104 M. Esteves et al.

exchanged ideas and made suggestions. Face-to-face meeting took place only once a
month, because the teachers were in Leiria and the students in Vila Real, 270 km
apart: once a month there was a meeting at Vila Real to discuss the projects and the
details of on-line cooperation.

The first students that participated in the community (2nd term of 2006/2007), 50%
had little experience in both programming and SL, so they were in periphery level.
The remaining 50% already had some experience in programming, although this was
their first contact with SL, and thus while at the periphery of the “programming in
SL” community they are already active members of our community if seen just from a
programming perspective. The teacher’s task was to motivate students at periphery to
reach the active stage [10]. At the beginning of the subsequent term, 80% of students
were at the periphery and the others within the active level.

3.4 Analysis of Results

It is possible to distinguish two phases in these activities: the first consisted in build-
ing objects with the modelling tools of SL, and is devoid of programming (robots,
trains and dogs); and the second one consisted in the development of programs in
LSL, to provide behaviours to the objects created previously.

During the first phase there weren’t significant disparities between students at dif-
ferent levels of participation, the difficulties felt by both students were identical. For
example: how to link objects with each other, how to make a copy or to line up ob-
jects. This is consistent with the previously-mentioned fact that while some students
were at the periphery and others within the active level, regarding programming ex-
pertise, all began at the periphery regarding SL use.

In the second phase, some differences were observed among students. Students
from the active level didn’t have great difficulties in understanding how LSL works.
Although they had already worked with event-based programming in other courses,
these students weren’t familiar with the concept of state machines or their program-
ming. The major difficulty they faced consisted in selecting which library functions
and events to use, and how to use them to implement specific functionalities. The
teachers guided them, by showing alternative ways of creating identical object behav-
iours, so that they could ponder which would be more adequate.

Students at the periphery, programming-wise, weren’t used to self study or
autonomous computer programming development, so closer guidance from the teach-
ers was needed. It began with simple examples that students would experiment with
and modify. Whenever they had difficulties in understanding the examples, some ex-
planations were provided for that specific part of the code. This way, students could
understand what these small programs could do and the goal of each one. Based on
the personal experience of the programming teachers and the scientific literature in
this field, it is known that this level of understanding is difficult to reach when stu-
dents are learning to program using traditional environments, such as C command-
line compilers, where the students generally feel great difficulty in understanding the
programming objective [2].

A particular important aspect in programming learning is the students’ reaction to
compilation errors [11], which are inevitable in the learning process. Students from
active level corrected the compilation errors whenever they happened without the

 Using Second Life in Programming's Communities of Practice 105

teachers’ help, whereas the periphery students found themselves without knowing the
reason why they occurred or how to correct them. When students had some difficulty
about the code they had implemented, they shared it with the teachers, so they could
observe and at the same time find out what was wrong and follow the teachers’ indi-
cations/instructions. This way, the students corrected the code and went on.

Execution errors occurred more often with active-level students. These students
tested more programs by their own initiative and noticed more frequently that these
didn’t execute as they expected. It was observed that the students were not less moti-
vated because of this; on the contrary, they corrected the programs and tested them
until they behaved has they wanted them to.

One of the projects set forth by teachers to the community consisted only in data
manipulation and very little graphic interaction (one of SL’s differentiating factors).
This resulted in difficulty for teachers to motivate periphery students to strive to reach
the active level. In order to go overcome this, community leaders had to involve ac-
tive students from the previous semester and external elements, in order to motivate
and increase the activity inside the community. In order to assess the work done by
students, it was observed that it was difficult to manage the attribution by students of
access privileges for teachers to their scripts, leading to situations that rendered as-
sessment impossible without contacting the student and requesting correction of
wrong privileges (for example, when a student would send the teacher an object with-
out conferring the necessary permissions to access the scripts).

One of the difficulties felt in the community development was the lack of a com-
mon space for impromptu presentation of schematic ideas and reflections: a “black-
board” as it was. Another issue we came across was the absence of a mechanism that
would inform the teachers, by email or some other non-SL system, what the students
had achieved throughout the week, i.e., what was reached, what had caused more de-
lays, which difficulties had been felt, and which attempts had been made to try and
overcome them.

4 Conclusions

In this paper we presented a study that has been conducted using the action research
methodology. In this study we created a programming community with the aim to
explore the viability of using SL as platform for teaching and learning a computer
programming language.

This study is not finished yet but we can conclude that:

- SL has characteristics that make it a platform suitable for teaching / learning a
computer programming language but it is necessary to use it in association with
another platform where the teacher can supply students with teaching materials.

- Students learning how to program by programming physical interactions in SL
(e.g., making a dog follow you and obey your voice command) are typically mo-
tivated. Students who focused primarily on non-visible techniques such as data
structures and string processing, benefiting from the environment just for en-
hanced context and not as a source of feedback for programming behavior, did
not seem to exhibit any motivational advantage over students who employ a

106 M. Esteves et al.

traditional console-oriented (text-only) approach. Thus, teachers must pay special at-
tention when conceiving students’ assignments, particularly if the students are novice
in programming because they need projects that stimulate their imagination.

References

1. Gray, W.D., Goldberg, N.C., Byrnes, S.A.: Novices and programming: Merely a difficult
subject (why?) or a means to mastering metacognitive skills? Review of the book Studying
the Novice Programmer. Journal of Educational Research on Computers, 131–140 (1993)

2. Miliszewska, I., Tan, G.: Befriending Computer Programming: A Proposed Approach to
Teaching Introductory Programming. Journal of Issues in Informing Science & Informa-
tion Technology 4, 277–289 (2007)

3. Lahtinen, E., Mutka, K.A., Jarvinen, H.M.: A Study of the difficulties of novice program-
mers. In: Proceedings of the 10th annual SIGSCE conference on Innovation and technol-
ogy in computer science education (ITICSE 2005), Monte da Caparica, Portugal, June
27-29, 2005, pp. 14–18. ACM Press, New York (2005)

4. Figueiredo, A.D., Afonso, A.P.: Managing Learning in Virtual Settings: the Role of Con-
text. Information Science Publishing (2006)

5. Lethbridge, C., Diaz-Herrera, J., LeBlanc, Jr., Thompson, B.: mproving software practice
through education: Challenges and future trends. In: Future of Software Engineering
(FOSE apos;2007), pp. 12–28 (May 2007)

6. Fleury, M., Oliveira Junior, M.: Gestão do Conhecimento Estratégico – Integrando
Aprendizagem, Conhecimento e Competências. Editora Atlas, São Paulo (2001)

7. Dillenbourg, P.: Learning In The New Millennium: Building New Education Strategies
For Schools. In: Workshop on Virtual Learning Environments (2000),

 http://tecfa.unige.ch/tecfa/publicat/dil-papers-2/
 Dil.7.5.18.pdf

8. Wenger, E.C., Snyder, W.M., McDermott, R.: Cultivating communities of practice: a prac-
titioner’s guide to building knowledge organizations. Harvard Business School Press Book
(2002)

9. Lave, J., Wenger, E.: Situated Learning: Legitimate Peripheral Participation. Cambridge
University Press, Cambridge (1991)

10. Esteves, M., Antunes, R., Morgado, L., Martins, P., Fonseca, B.: Contextualização da
aprendizagem da Programação: Estudo Exploratório no Second Life. In: Proceedings of
IADIS Ibero-Americana WWW/Internet 2007, Vila Real, Portugal, Outubro, 7–8 (2007)

11. Esteves, M., Mendes, A.: A Simulation Tool to Help Learning of Object Oriented Pro-
gramming Basics. In: Proceedings of the 34th ASEE/IEEE Frontiers in Education Confer-
ence, Savannah, Georgia, USA, October, 20–23 (2004)

12. Lessard-hébert, M., Goyette, G., Boutin, G.: Investigação Qualitativa: Fundamentos e
Práticas, Lisboa, Instituto Piaget (1994)

13. Dick, B.: A beginner’s guide to action research (2008),
 http://www.scu.edu.au/schools/gcm/ar/arp/guide.html

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

